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Preface

Oracle Database AI Vector Search User's Guide provides information about querying semantic
and business data with Oracle AI Vector Search.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Audience
This guide is intended for application developers, database administrators, data users, and
others who perform the following tasks:

• Implement artificial intelligence (AI) solutions for websites and unstructured or structured
data

• Build query applications by using natural language processing and machine learning
techniques

• Perform similarity searches on content, such as words, documents, audio tracks, or
images

To use this document, you must have a basic familiarity with vector embedding and machine
learning concepts, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface
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Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface
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1
What's New for Oracle AI Vector Search

This chapter lists the following changes in Oracle Database AI Vector Search User's Guide for
Oracle Database 23ai:

• Oracle Database 23ai Release Updates
The following sections include new AI Vector Search features introduced in Oracle
Database 23ai as part of the listed Release Update.

• Autonomous Database Updates
The following sections include new AI Vector Search features introduced in Oracle
Autonomous Database as part of the listed update.

• Deprecated Features
The following features are deprecated, and may be desupported in a future release.

Oracle Database 23ai Release Updates
The following sections include new AI Vector Search features introduced in Oracle Database
23ai as part of the listed Release Update.

• July 2024, Release Update 23.5
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.5.

• October 2024, Release Update 23.6
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.6.

• January 2025, Release Update 23.7
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.7.

• April 2025, Release Update 23.8
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.8.

July 2024, Release Update 23.5
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.5.

Feature Description

Binary Vectors You can use the BINARY vector dimension format to declare vectors and
vector columns.

Create Tables Using the VECTOR Data Type

LangChain Integration Oracle AI Vector Search's integration with LangChain allows you to use
LangChain’s powerful open source orchestration framework seamlessly
with vector search capabilities.

Oracle AI Vector Search Integration with LangChain

1-1



Feature Description

Optimizer Plans for Vector Indexes More information has been added about optimizer plans for HNSW and
IVF indexes along with vector index hints.

• Optimizer Plans for HNSW Vector Indexes
• Optimizer Plans for IVF Vector Indexes
• Vector Index Hints

Documentation Map to GenAI Prompts Use the documentation map to find prompts that will help you get
tailored answers from your preferred GenAI Chatbot to your Oracle AI
Vector Search questions.

Your Vector Documentation Map to GenAI Prompts

October 2024, Release Update 23.6
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.6.

Note:

Certain features require the COMPATIBLE initialization parameter to be manually
updated in order to be available for use. For information about the COMPATIBLE
parameter and how to change it, see Oracle Database Upgrade Guide.

If you are using RAC instances, certain features must be enabled using Oracle RAC
two-stage rolling updates to ensure that any patches are enabled on all nodes. For
more information, see Oracle Real Application Clusters Administration and
Deployment Guide.

Feature Description

Hybrid Search using Hybrid Vector Indexes You can use a hybrid vector index to index and query data using a
combination of full-text search and vector similarity search. Hybrid
searches can enhance the relevance (quality) of your search results by
integrating the keyword matching capabilities of Oracle Text indexes with
the semantic precision of vector indexes.

An end-to-end indexing pipeline facilitates the indexing of documents
without requiring you to be an expert in various text processing, chunking,
or embedding strategies.

As part of this feature, new preference helper procedures have been
added to the existing DBMS_VECTOR and DBMS_VECTOR_CHAIN PL/SQL
packages to manage vector index-related settings.

A new PL/SQL package, DBMS_HYBRID_VECTOR, has also been added.
The package contains a SEARCH API that allows you to query against
hybrid vector indexes in multiple ways.

A new dictionary view <index name>$VECTORS provides information on
row identifiers, chunks, and embeddings for all indexed documents.

• Manage Hybrid Vector Indexes
• Perform Hybrid Search
• DBMS_HYBRID_VECTOR
• CREATE_PREFERENCE
• DROP_PREFERENCE
• <index name>$VECTORS

Chapter 1
Oracle Database 23ai Release Updates
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Feature Description

Updated AI Vector Search Workflow The AI Vector Search Workflow included in this guide has been updated
to include support for hybrid vector indexes and hybrid search.

Oracle AI Vector Search Workflow

Updated Documentation Map to GenAI Prompts The documentation map to GenAI prompts has been updated to include
the new features available in Release Update 23.6.

Your Vector Documentation Map to GenAI Prompts

Extended SQL Quick Start The SQL Quick Start Using a Vector Embedding Model Uploaded into the
Database has been extended to include steps for creating a hybrid vector
index and running a hybrid search.

SQL Quick Start Using a Vector Embedding Model Uploaded into the
Database

Support for Ollama You can use open embedding models (such as mxbai-embed-large,
nomic-embed-text, or all-minilm) and large language models (such as
Llama 3, Phi 3, Mistral, or Gemma 2) using the local host REST endpoint
provider, Ollama. Ollama is a free and open-source command-line
interface tool that allows you to run these models locally and privately on
your Linux, Windows, and macOS systems.

• Convert Text String to Embedding Using the Local REST Provider
Ollama

• Generate Summary Using the Local REST Provider Ollama
• Generate Text Using the Local REST Provider Ollama

Support for SPARSE Vectors In addition to DENSE vectors, you have the option to create SPARSE
vectors.

Sparse vectors are vectors that typically have a large number of
dimensions but only a few of those dimensions have non-zero values.
Because sparse vectors only store non-zero values, their use can improve
efficiency and save storage space.

The COMPATIBLE initialization parameter must be set to 23.6.0 to use this
feature.

Create Tables Using the VECTOR Data Type

Integration with LlamaIndex Oracle AI Vector Search's integration with LlamaIndex allows you to use
LlamaIndex's open-source data framework with vector search capabilities.
This provides a powerful foundation for building sophisticated AI
applications that can leverage both structured and unstructured data
within the Oracle ecosystem.

Oracle AI Vector Search Integration with LlamaIndex

Jaccard Distance JACCARD is available as a distance metric and JACCARD_DISTANCE as a
shorthand for the VECTOR_DISTANCE function to calculate the Jaccard
distance between two BINARY vectors.

• Jaccard Similarity
• JACCARD_DISTANCE

Hamming Distance HAMMING_DISTANCE is available as a shorthand for the
VECTOR_DISTANCE function to calculate the Hamming similarity between
two vectors.

HAMMING_DISTANCE

Chapter 1
Oracle Database 23ai Release Updates
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Feature Description

Transaction Support for HNSW Indexes Transactions are maintained on tables with Hierarchical Navigable Small
World (HNSW) index graphs by using data structures, such as private
journal and shared journal.

A private journal records vectors that are added or deleted by a
transaction, whereas a shared journal records all the commit system
change numbers (SCNs) and corresponding modified rows.

If using RAC instances, you must enable Patch 36932885 using Oracle
RAC two-stage rolling updates.

Understand Transaction Support for Tables with HNSW Indexes

HNSW Index Duplication and Reload By default, a duplication mechanism is used to create HNSW indexes in
an Oracle RAC environment or when an HNSW index repopulation
operation is triggered. When an Oracle Database instance starts again, a
reload mechanism is triggered to recreate the HNSW graph in memory as
quickly as possible. HNSW full checkpoints are used to reload the graph
in memory.

You can use the VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD initialization
parameter to manage duplication and reload mechanisms for HNSW
indexes.

If using RAC instances, you must enable Patch 36932885 using Oracle
RAC two-stage rolling updates.

Understand HNSW Index Population Mechanisms in Oracle RAC or
Single Instance

Update to the default for
VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD

The default value for the VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD
initialization parameter has been changed from OFF to RESTART. With this
update, HNSW duplication and reload mechanisms are enabled by
default.

Understand HNSW Index Population Mechanisms in Oracle RAC or
Single Instance

Global and Local Partitioning for IVF Indexes Inverted File Flat (IVF) vector indexes support both global and local
indexes on partitioned tables.

By default, IVF indexes are globally partitioned by centroid. You can
choose to create a local IVF index, which provides a one-to-one
relationship between the base table partitions or subpartitions and the
index partitions.

If using RAC instances, you must enable Patch 36932885 using Oracle
RAC two-stage rolling updates.

• Inverted File Flat Vector Indexes Partitioning Schemes
• Inverted File Flat Index Syntax and Parameters

GET_INDEX_STATUS, ENABLE_CHECKPOINT,
DISABLE_CHECKPOINT, and
INDEX_VECTOR_MEMORY_ADVISOR Procedures

New procedures are available with the DBMS_VECTOR PL/SQL package:

• GET_INDEX_STATUS to query the status of a vector index creation

• ENABLE_CHECKPOINT and DISABLE_CHECKPOINT to enable or
disable the Checkpoint feature for HNSW indexes

• INDEX_VECTOR_MEMORY_ADVISOR to determine the vector memory
size needed for a vector index

Vector Index Status, Checkpoint, and Advisor Procedures

VECSYS.VECTOR$INDEX$CHECKPOINTS View A new dictionary view VECSYS.VECTOR$INDEX$CHECKPOINTS provides
information about HNSW full checkpoints at the database level.

VECSYS.VECTOR$INDEX$CHECKPOINTS

Chapter 1
Oracle Database 23ai Release Updates
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Feature Description

Relational Data Vectorization You can use Oracle Machine Learning (OML) Feature Extraction
algorithms with the VECTOR_EMBEDDING() SQL operator to vectorize
sets of relational data, build similarity indexes, and perform similarity
searches. These algorithms help in extracting the most informative
features or columns from the data, making it easier to analyze
correlations and redundancies in that data.

Vectorize Relational Tables Using OML Feature Extraction Algorithms

Document Reranking You can use the RERANK function, added to the existing DBMS_VECTOR
and DBMS_VECTOR_CHAIN PL/SQL packages, to enhance the relevancy
of your query results in Retrieval Augmented Generation (RAG)
scenarios. Third-party reranking models are used to reassess and reorder
an initial list of retrieved documents.

• Use Reranking for Better RAG Results
• DBMS_VECTOR.RERANK
• DBMS_VECTOR_CHAIN.RERANK

BLOB Support for UTL_TO_GENERATE_TEXT() In addition to the existing textual input, the UTL_TO_GENERATE_TEXT()
PL/SQL function accepts BLOB as input. You can provide binary data,
such as an image file, to generate a textual analysis or meaningful
description of the contents of an image.

Describe Images Using Public REST Providers

BLOB Support for UTL_TO_EMBEDDING() In addition to the existing textual input, the UTL_TO_EMBEDDING()
PL/SQL function accepts BLOB as input. This lets you directly generate a
vector embedding from image files using REST API calls to third-party
image embedding models.

Convert Image to Embedding Using Public REST Providers

List of REST Endpoints You can refer to the list of REST endpoints and corresponding REST calls
supported for all third-party REST providers.

Supported Third-Party Provider Operations and Endpoints

January 2025, Release Update 23.7
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.7.

Note:

If you are using RAC instances, certain features must be enabled using Oracle RAC
two-stage rolling updates to ensure that any patches are enabled on all nodes. For
more information, see Oracle Real Application Clusters Administration and
Deployment Guide.

Feature Description

External Table support Columns of type VECTOR can be included in external tables, providing the
option to store vector embeddings used for AI workloads outside of the
database while still using the database as a semantic search engine.

If using RAC instances, you must enable Patch 37244967 using Oracle
RAC two-stage rolling updates.

Vectors in External Tables

Chapter 1
Oracle Database 23ai Release Updates

1-5



Feature Description

Arithmetic and aggregate function support The arithmetic operators for addition, subtraction, and multiplication along
with the aggregate functions SUM and AVG can be used with vectors and
columns of type VECTOR.

Arithmetic operators are supported for use with vectors in both SQL and
PL/SQL.

If using RAC instances, you must enable Patch 37289468 using Oracle
RAC two-stage rolling updates for support in PL/SQL.

Arithmetic Operators

Aggregate Functions

PL/SQL BINARY vector support In addition to FLOAT32 (the default format for comma-separated string
representations of vectors), FLOAT64, and INT8 dimension formats, you
can also use the BINARY dimension format.

A BINARY vector represents each dimension as a single bit (0 or 1).
BINARY vectors can now be created and declared in PL/SQL, supported
in the same way as they are in SQL.

If using RAC instances, you must enable Patch 37289468 using Oracle
RAC two-stage rolling updates.

BINARY Vectors

PL/SQL JACCARD distance metric support The distance metric JACCARD can be used in PL/SQL for similarity
searches with BINARY vectors.

In PL/SQL, there is no standalone shorthand JACCARD_DISTANCE
function. Use JACCARD as the distance metric parameter of the
VECTOR_DISTANCE function instead.

If using RAC instances, you must enable Patch 37289468 using Oracle
RAC two-stage rolling updates.

VECTOR_DISTANCE

For additional information about VECTOR operations supported by PL/
SQL, see Oracle Database PL/SQL Language Reference

Globally Distributed Database support Columns of type VECTOR can be included in sharded tables and
duplicated tables in a distributed database, and vector indexes are
supported on sharded tables in a distributed database, with some
restrictions.

Vectors in Distributed Database Tables

Vector Indexes in a Globally Distributed Database

"Restrictions" in Create Tables Using the VECTOR Data Type

In-Database Algorithms Support for VECTOR
Data Type Predictors

The VECTOR data type is supported and can be used as an input to
database machine learning algorithms such as classification, anomaly,
regression, clustering and feature extraction.

Overview of Oracle AI Vector Search

More information on using VECTOR data type in machine learning can be
found in Vector Data Type Support

Support for Image Transformer Models with AI
Vector Search Using the In-Database ONNX
Runtime

The Oracle Database ONNX runtime engine includes support of models
for encoding images.

The ONNX Pipeline models provide methods for:
• Text Embedding - ONNX Pipeline Models : Text Embedding
• Image Embedding - ONNX Pipeline Models : Image Embedding
• Multi-modal Embedding - ONNX Pipeline Models: CLIP Multi-Modal

Embedding
• Text Classification - ONNX Pipeline Models: Text Classification
• Reranking - ONNX Pipeline Models: Reranking Pipeline

Chapter 1
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Feature Description

Hybrid Vector Index for JSON New PATHS field is added to the DBMS_VECTOR_CHAIN.VECTORIZER that
allows specification of an array of path objects : CREATE_PREFERENCE

New syntax in the DBMS_HYBRID_VECTOR.SEARCH API to allow searches
restricted to paths. The VECTOR field accepts an INPATH parameter which
an array of valid JSON paths to restrict the search : SEARCH

Support for the creation of a LOCAL index on a HVI when the underlying
vector index_type is IVF : CREATE HYBRID VECTOR INDEX

Enhancements on ALTER INDEX :
• Support for replacing a vectorizer preference for an existing HVI

index.
• Support for replacing only the model and/or vector index_type

without specifying full vectorizer preference for an existing HVI index.
• Support for ‘up-converting’ an existing Text SEARCH or JSON

SEARCH index to an HVI without a full rebuild of the textual/JSON
parts of the index.

ALTER INDEX

Support for running optimization only on the $VR table for an HVI : Hybrid
Vector Index Maintenance Operations

Included Columns in Neighbor Partition Vector
Indexes

Included columns permit additional table (non-vector) columns to be
stored in a Neighbor Partition vector index. The benefit is that query
execution is optimized by removing the need to access the underlying
base table to retrieve these columns.

If using RAC instances, you must enable Patch 37306139 using Oracle
RAC two-stage rolling updates.

Included Columns

April 2025, Release Update 23.8
Included are some notable Oracle AI Vector Search updates with Oracle Database 23ai,
Release Update 23.8.

Note:

If you are using RAC instances, certain features must be enabled using Oracle RAC
two-stage rolling updates to ensure that any patches are enabled on all nodes. For
more information, see Oracle Real Application Clusters Administration and
Deployment Guide.

Feature Description

Custom JavaScript Distance Function In addition to the availability of built-in vector distance functions, you can
now create your own custom distance function. The Multilingual Engine
(MLE) is used to create a JavaScript function that defines the distance
operation of your choice. The custom distance function can be used in
similarity searches and in the creation of HNSW vector indexes.

Custom Distance Function
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Feature Description

Automatic Vector Pool sizing with on-premises
deployments

The vector memory pool can be configured to dynamically grow to meet
the sizing needs for creating HNSW indexes. This is now supported for
both Oracle Autonomous Databases and non-Autonomous databases.

Size the Vector Pool

SPARSE support in PL/SQL PL/SQL now natively supports the creation and declaration of SPARSE
vectors.

If using RAC instances, you must enable Patch 37535524 using Oracle
RAC two-stage rolling updates.

SPARSE Vectors

Oracle Database PL/SQL Language Reference

New table function:
DBMS_HYBRID_VECTOR.SEARCHPIPELINE

In addition to the existing DBMS_HYBRID_VECTOR.SEARCH API, the new
table function DBMS_HYBRID_VECTOR.SEARCHPIPELINE returns a
pipeline of row records.

SEARCHPIPELINE

New function: DBMS_HYBRID_VECTOR.GET_SQL DBMS_HYBRID_VECTOR.GET_SQL function displays the internal SQL
query that is executed for DBMS_HYBRID_VECTOR.SEARCH.

GET_SQL

FILTER_BY support in
DBMS_HYBRID_VECTOR.SEARCH

A FILTER_BY field is added in the SEARCH API of the
DBMS_HYBRID_VECTOR package. The FILTER_BY field allows you to
narrow the search results using standard relational logical constraints.

FILTER_BY

Terminable iteration for IVF vector indexes Terminable iteration provides the ability to return the expected 'K' number
of rows during a search using an IVF vector index. The underlying
method extends the search to additional centroids ensuring that the
needed K rows are returned.

Terminable Iteration for IVF Index

Using JSON in Included Columns with IVF
Indexes

Restrictions have been removed on JSON, BLOB, and CLOB data types,
enabling broader and more flexible usage of these data types in included
columns.

Included Columns

Autonomous Database Updates
The following sections include new AI Vector Search features introduced in Oracle
Autonomous Database as part of the listed update.

• June 2024
Included are some notable Oracle AI Vector Search updates with the Autonomous
Database, June 2024 release.

• July 2024
Included are some notable Oracle AI Vector Search updates with the Autonomous
Database, July 2024 release.

• August 2024
No additional features were introduced for Oracle Autonomous Database in August 2024.

• September 2024
No additional features were introduced for Oracle Autonomous Database in September
2024.
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• October 2024
New features are available for Oracle Database in October with Release Update 23.6.

• November 2024
No additional features were introduced for Oracle Autonomous Database in November
2024.

• December 2024
No additional features were introduced for Oracle Autonomous Database in December
2024.

• January 2025
New features are available for Oracle Database in January with Release Update 23.7.

• February 2025
No additional features were introduced for Oracle Autonomous Database in February
2025.

• March 2025
No additional features were introduced for Oracle Autonomous Database in March 2025.

• April 2025
New features are available for Oracle Database in April with Release Update 23.8.

June 2024
Included are some notable Oracle AI Vector Search updates with the Autonomous Database,
June 2024 release.

Feature Description

HNSW Index Support in RAC Environments It is possible to use Hierarchical Navigable Small World (HNSW) indexes
with SELECT statements in RAC environments. For more information,
see Understand HNSW Index Population Mechanisms in Oracle RAC or
Single Instance.

Sizing the Vector Pool with ADB-S With Autonomous Database Serverless (ADB-S) services, the vector
pool dynamically grows and shrinks. It cannot be explicitly set. For more
information, see Size the Vector Pool.

SQL Quick Start with Vector Generator A SQL scenario is provided to get you started using Oracle AI Vector
Search. The quick start includes a PL/SQL program that creates a
vector generator, offering a simple alternative to using a vector
embedding model. For the full tutorial, see SQL Quick Start Using a
FLOAT32 Vector Generator.

Similarity Search and Index Creation Syntax • The APPROX and APPROXIMATE keywords are now optional. If
omitted while connected to an ADB-S instance, an approximate
search using a vector index is attempted if one exists.

For more information about approximate search with indexes, see 
Approximate Search Using HNSW and Approximate Search Using
IVF.

• The NEIGHBOR keyword in the ORGANIZATION clause of CREATE
VECTOR INDEX is now optional.

For the full syntax to create HNSW and IVF indexes, see 
Hierarchical Navigable Small World Index Syntax and Parameters
and Inverted File Flat Index Syntax and Parameters.
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July 2024
Included are some notable Oracle AI Vector Search updates with the Autonomous Database,
July 2024 release.

Feature Description

New Vector Index Views The following vector index views are now available with Autonomous
Database Serverless (ADB-S) services:
• V$VECTOR_INDEX
• V$VECTOR_GRAPH_INDEX
• V$VECTOR_PARTITIONS_INDEX

August 2024
No additional features were introduced for Oracle Autonomous Database in August 2024.

September 2024
No additional features were introduced for Oracle Autonomous Database in September 2024.

October 2024
New features are available for Oracle Database in October with Release Update 23.6.

For information, see October 2024, Release Update 23.6.

November 2024
No additional features were introduced for Oracle Autonomous Database in November 2024.

December 2024
No additional features were introduced for Oracle Autonomous Database in December 2024.

January 2025
New features are available for Oracle Database in January with Release Update 23.7.

For information, see January 2025, Release Update 23.7.

February 2025
No additional features were introduced for Oracle Autonomous Database in February 2025.

March 2025
No additional features were introduced for Oracle Autonomous Database in March 2025.
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April 2025
New features are available for Oracle Database in April with Release Update 23.8.

For information, see April 2025, Release Update 23.8.

Deprecated Features
The following features are deprecated, and may be desupported in a future release.

Starting with Oracle Database 23ai, Release Update 23.7, the python packages
EmbeddingModel and EmbeddingModelConfig are deprecated. These packages are replaced
with ONNXPipeline and ONNXPipelineConfig respectively.

• Details and utility of the deprecated package can be found here : Python Classes to
Convert Pretrained Models to ONNX Models (Deprecated)

• Oracle recommends that you use the latest version. You can find the details of the updated
python classes in Import Pretrained Models in ONNX Format
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2
Overview

Oracle AI Vector Search stores and indexes vector embeddings for fast retrieval and similarity
search.

• Overview of Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads and allows you
to query data based on semantics, rather than keywords.

• Why Use Oracle AI Vector Search?
One of the biggest benefits of Oracle AI Vector Search is that semantic search on
unstructured data can be combined with relational search on business data in one single
system.

• Oracle AI Vector Search Workflow
A typical Oracle AI Vector Search workflow follows the included primary steps.

Overview of Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads and allows you to
query data based on semantics, rather than keywords.

VECTOR Data Type

The VECTOR data type is introduced with the release of Oracle Database 23ai, providing the
foundation to store vector embeddings alongside business data in the database. Using
embedding models, you can transform unstructured data into vector embeddings that can then
be used for semantic queries on business data. In order to use the VECTOR data type and its
related features, the COMPATIBLE initialization parameter must be set to 23.4.0 or higher. For
more information about the parameter and how to change it, see Oracle Database Upgrade
Guide.

See the following basic example of using the VECTOR data type in a table definition:

CREATE TABLE docs (doc_id INT, doc_text CLOB, doc_vector VECTOR);

For more information about the VECTOR data type and how to use vectors in tables, see Create
Tables Using the VECTOR Data Type.

Due to the numerical nature of the VECTOR data type, you can use it as an input to the machine
learning algorithms such as classification, anomaly, regression, clustering and feature
extraction. More details on using VECTOR data type in machine learning could be found in 
Vector Data Type Support.

Note:

Support for VECTOR data type machine learning is available in all versions starting
23.7, but not in earlier versions.
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Vector Embeddings

If you've ever used applications such as voice assistants, chatbots, language translators,
recommendation systems, anomaly detection, or video search and recognition, you've implicitly
used vector embeddings features.

Oracle AI Vector Search stores vector embeddings, which are mathematical vector
representations of data points. These vector embeddings describe the semantic meaning
behind content such as words, documents, audio tracks, or images. As an example, while
doing text based searches, vector search is often considered better than keyword search as
vector search is based on the meaning and context behind the words and not the actual words
themselves. This vector representation translates semantic similarity of objects, as perceived
by humans, into proximity in a mathematical vector space. This vector space usually has
multihundreds, if not thousands, of dimensions. Put differently, vector embeddings are a way of
representing almost any kind of data, such as text, images, videos, users, or music as points in
a multidimensional space where the locations of those points in space, and proximity to others,
are semantically meaningful.

This simplified diagram illustrates a vector space where words are encoded as 2-dimensional
vectors.

 

 

Similarity Search

Searching semantic similarity in a data set is now equivalent to searching nearest neighbors in
a vector space instead of using traditional keyword searches using query predicates. As
illustrated in the following diagram, the distance between dog and wolf in this vector space is
shorter than the distance between dog and kitten. In this space, a dog is more similar to a wolf
than it is to a kitten. See Perform Exact Similarity Search for more information.
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Vector data tends to be unevenly distributed and clustered into groups that are semantically
related. Doing a similarity search based on a given query vector is equivalent to retrieving the
K-nearest vectors to your query vector in your vector space. Basically, you need to find an
ordered list of vectors by ranking them, where the first row in the list is the closest or most
similar vector to the query vector, the second row in the list is the second closest vector to the
query vector, and so on. When doing a similarity search, the relative order of distances is what
really matters rather than the actual distance.

Using the preceding vector space, here is an illustration of a semantic search where your
query vector is the one corresponding to the word Puppy and you want to identify the four
closest words:
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Similarity searches tend to get data from one or more clusters depending on the value of the
query vector and the fetch size.

Approximate searches using vector indexes can limit the searches to specific clusters,
whereas exact searches visit vectors across all clusters. See Use Vector Indexes for more
information.

Vector Embedding Models

One way of creating such vector embeddings could be to use someone's domain expertise to
quantify a predefined set of features or dimensions such as shape, texture, color, sentiment,
and many others, depending on the object type with which you're dealing. However, the
efficiency of this method depends on the use case and is not always cost effective.

Instead, vector embeddings are created via neural networks. Most modern vector embeddings
use a transformer model, as illustrated by the following diagram, but convolutional neural
networks can also be used.

Figure 2-1    Vector Embedding Model
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Depending on the type of your data, you can use different pretrained, open-source models to
create vector embeddings. For example:

• For textual data, sentence transformers transform words, sentences, or paragraphs into
vector embeddings.

• For visual data, you can use Residual Network (ResNet) to generate vector embeddings.

• For audio data, you can use the visual spectrogram representation of the audio data to fall
back into the visual data case.

Each model also determines the number of dimensions for your vectors. For example:

• Cohere's embedding model embed-english-v3.0 has 1024 dimensions.

• OpenAI's embedding model text-embedding-3-large has 3072 dimensions.

• Hugging Face's embedding model all-MiniLM-L6-v2 has 384 dimensions

Of course, you can always create your own model that is trained with your own data set.

Import Embedding Models into Oracle Database

Although you can generate vector embeddings outside the Oracle Database using pretrained
open-source embeddings models or your own embeddings models, you also have the option to
import those models directly into the Oracle Database if they are compatible with the Open
Neural Network Exchange (ONNX) standard. Oracle Database implements an ONNX runtime
directly within the database. This allows you to generate vector embeddings directly within the
Oracle Database using SQL. See Generate Vector Embeddings for more information.

Why Use Oracle AI Vector Search?
One of the biggest benefits of Oracle AI Vector Search is that semantic search on unstructured
data can be combined with relational search on business data in one single system.

This is not only powerful but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation between multiple
systems.

For example, suppose you use an application that allows you to find a house that is similar to a
picture you took of one you like that is located in your preferred area for a certain budget.
Finding a good match in this case requires combining a semantic picture search with searches
on business data.

With Oracle AI Vector Search, you can create the following table:

CREATE TABLE house_for_sale (house_id     NUMBER,
                             price        NUMBER,
                             city         VARCHAR2(400),
                             house_photo  BLOB,
                             house_vector VECTOR);

The following sections of this guide describe in detail the meaning of the VECTOR data type and
how to load data in this column data type.

With that table, you can run the following query to answer your basic question:

SELECT house_photo, city, price
FROM   house_for_sale
WHERE  price <= :input_price AND
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       city  = :input_city
ORDER BY VECTOR_DISTANCE(house_vector, :input_vector);

Later sections of this guide describe in detail the meaning of the VECTOR_DISTANCE function.
This query is just to show you how simple it is to combine a vector embedding similarity search
with relation predicates.

In conjunction with Oracle Database 23ai, Oracle Exadata System Software release 24.1.0
introduces AI Smart Scan, a collection of Exadata-specific optimizations capable of improving
the performance of various AI vector query operations by orders of magnitude.

AI Smart Scan automatically accelerates Oracle Database 23ai AI Vector Search with
optimizations that deliver low-latency parallelized scans across massive volumes of vector
data. AI Smart Scan processes vector data at memory speed, leveraging ultra-fast Exadata
RDMA Memory (XRMEM) and Exadata Smart Flash Cache in the Exadata storage servers,
and performs vector distance computations and top-K filtering at the data source, avoiding
unnecessary network data transfer and database server processing.

Oracle AI Vector Search Workflow
A typical Oracle AI Vector Search workflow follows the included primary steps.

This is illustrated in the following diagram:

Figure 2-2    Oracle AI Vector Search Use Case Flowchart
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Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads. It allows you to
query data based on semantics and image similarity rather than simply keywords. The
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preceding diagram shows the possible steps you must take to manage vector embeddings with
Oracle AI Vector Search.

Primary workflow steps:

1. Generate Vector Embeddings from Your Unstructured Data
You can perform this step either outside or within Oracle Database. To perform this step
inside Oracle Database, you must first import a vector embedding model using the ONNX
standard. Your unstructured data can reside within or outside Oracle Database.

For more information, see Generate Vector Embeddings.

2. Store Vector Embeddings, Unstructured Data, and Relational Business Data in
Oracle Database
After you have generated the vector embeddings, you can store them along with the
corresponding unstructured and relational business data. If vector embeddings are stored
outside Oracle Database, you can use SQL*Loader or Data Pump to load the vector
embedding inside a relational table within Oracle Database. It is also possible to access
vector embeddings stored outside the database through external tables.

For more information, see Store Vector Embeddings.

3. Create Vector Indexes and Hybrid Vector Indexes
Similar to how you create indexes on regular table columns, you can create vector indexes
on vector embeddings, and you can create hybrid vector indexes (a combination of Oracle
Text index and vector index) on your unstructured data. This is beneficial for running
similarity searches over huge vector spaces.

For more information, see Create Vector Indexes and Hybrid Vector Indexes.

4. Query Data with Similarity and Hybrid Searches
You can then use Oracle AI Vector Search native SQL operations to combine similarity
with traditional relational key searches. In addition, you can run hybrid searches, an
advanced information retrieval technique that combines both the similarity and keyword
searches to achieve highly relevant search results. SQL and PL/SQL provide powerful
utilities to transform unstructured data, such as documents, into chunks before generating
vector embeddings on each chunk.

For more information, see Query Data With Similarity and Hybrid Searches and Supported
Clients and Languages.

5. Generate a Prompt and Send it to an LLM for a Full RAG Inference
You can use vector utility PL/SQL APIs for prompting large language models (LLMs) with
textual prompts and images using LLM-powered interfaces. LLMs inherently lack the ability
to access or incorporate new information after their training cutoff. By providing your LLM
with up-to-date facts from your company, you can minimize the probability that an LLM will
make up answers (hallucinate). Retrieval Augmented Generation (RAG) is an approach
developed to address the limitations of LLMs. RAG combines the strengths of pretrained
language models, including reranking ones, with the ability to retrieve information from a
dataset or database in real time during the generation of responses. Oracle AI Vector
Search enables RAG and LLM integration using popular frameworks like LangChain,
Ollama, and LlamaIndex.

For more information, see Work with LLM-Powered APIs and Retrieval Augmented
Generation.
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3
Get Started

To get started, review the steps for the different tasks that you can do with Oracle AI Vector
Search.

• SQL Quick Start Using a Vector Embedding Model Uploaded into the Database
A set of SQL commands is provided to run a particular scenario that will help you
understand Oracle AI Vector Search capabilities.

• SQL Quick Start Using a FLOAT32 Vector Generator
A PL/SQL program that creates a vector generator is included along with example queries
and results, providing a simple way to get started with Oracle AI Vector Search without a
vector embedding model.

• SQL Quick Start Using a BINARY Vector Generator
A set of procedures generate BINARY vectors, providing a simple way to get started with
Oracle AI Vector Search without a vector embedding model.

• Your Vector Documentation Map to GenAI Prompts
Follow the included steps to increase your chance of getting better and more consistent
answers about this document from your preferred Generative AI Chatbot with internet
search capabilities.

SQL Quick Start Using a Vector Embedding Model Uploaded into
the Database

A set of SQL commands is provided to run a particular scenario that will help you understand
Oracle AI Vector Search capabilities.

This quick start scenario introduces you to the VECTOR data type, which represents the
semantic meaning behind your unstructured data. You will also use Vector Search SQL
operators, allowing you to perform a similarity search to find vectors (and thereby content) that
are similar to each other. Vector indexes are also created to help you accelerate similarity
searches in an approximate manner. In addition to pure similarity searches, you will create
Hybrid Vector Indexes and use them to run hybrid searches.

See Overview of Oracle AI Vector Search for more introductory information if needed.

The script chunks two Oracle Database Documentation books, assigns them corresponding
vector embeddings, and shows you some similarity searches using vector indexes.

To run this script you need three files similar to the following:

• my_embedding_model.onnx, which is an ONNX export of the corresponding embedding
model. To create such a file, see Convert Pretrained Models to ONNX Model: End-to-End
Instructions or download the provided Hugging Face all-MiniLM-L12-v2 model in ONNX
format.

• json-relational-duality-developers-guide.pdf, which is the PDF file for 
JSON-Relational Duality Developer's Guide

• oracle-database-23ai-new-features-guide.pdf, which is the PDF file for Oracle
Database New Features.

3-1
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Note:

You can use other PDF files instead of the ones listed here. If you prefer, you can use
another model of your choice as long as you can generate it as an .onnx file.

Let's start.

1. Copy the files to your local server directory or Oracle Cloud Infrastructure (OCI) Object
Storage.

If you have downloaded the Hugging Face all-MiniLM-L12-v2 model in ONNX format, run
the following before completing the rest of this step:

unzip all-MiniLM-L12-v2_augmented.zip

Result:

 Archive:   all-MiniLM-L12-v2_augmented.zip
 inflating: all_MiniLM_L12_v2.onnx
 inflating: README-ALL_MINILM_L12_V2-augmented.txt

For more information about the all-MiniLM-L12-v2 model, see the blog post Now Available!
Pre-built Embedding Generation model for Oracle Database 23ai.

You have the option to use the scp command for the local case and Oracle Command Line
Interface or cURL for the Object Storage case. In the Object Storage case, the relevant
command using Oracle Command Line Interface is oci os object put.

If using Object Storage, you can also mount the bucket on your database server using the
following steps (executed as a root user). This will allow you to easily copy files to Object
Storage.

a. Install the s3fs-fuse package.

yum install -y s3fs-fuse

b. On OCI, create a Customer Secret key. Make sure to save the ACCESS_KEY and
SECRET_KEY in your notes.

c. Create a folder that will be the mount point for the object storage bucket.

mkdir /mnt/bucket
chown oracle:oinstall /mnt/bucket

d. Put your Customer Secret key in a file that will be used to authenticate to OCI Object
Storage.

echo $ACCESS_KEY:$SECRET_KEY > .passwd=s3fs
chmod 400 .passwd-s3fs

e. Mount your object storage bucket in the mount point folder (note this is a one line
command).

s3fs ${BUCKET} /mnt/bucket -o passwd_file=.passwd-s3fs 
-o url=https://${NAMESPACE}.compat.objectstorage.$
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{REGION}.oraclecloud.com 
-onomultipart -o use_path_request_style -o endpoint=${REGION} -ouid=$
{ORAUID},
gid=${ORAGID},allow_other,mp_umask=022

f. If you want to make the mount permanent after reboot, you can create a crontab entry
(note this is a one line command).

echo "@reboot s3fs ${BUCKET} /mnt/bucket -o passwd_file=.passwd-s3fs -o 
url=https://${NAMESPACE}.compat.objectstorage.${REGION}.oraclecloud.com 
-onomultipart 
-o use_path_request_style -o endpoint=${REGION} -ouid=${ORAUID},gid=$
{ORAGID},
allow_other,mp_umask=022" > crontab-fragment.txt

g. Add the crontab entry to your server crontab.

crontab -l | cat - crontab-fragment.txt >crontab.txt && crontab 
crontab.txt
 
rm -f crontab.txt crontab-fragment.txt

As an alternative to the preceding Object Storage instructions, you also have the option to
use the LOAD_ONNX_MODEL_CLOUD procedure of the DBMS_VECTOR package to load an ONNX
embedding model from cloud Object Storage. For more information about the procedure,
see Oracle Database PL/SQL Packages and Types Reference.

2. Create storage, user, and privileges.

Here you create a new tablespace and a new user. You grant that user the
DB_DEVELOPER_ROLE and create an Oracle directory to point to the PDF files. You grant the
new user the possibility to read and write from/to that directory.

sqlplus / as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

drop user vector cascade;

create user vector identified by vector DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to vector;

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory vec_dump to vector;

3. Load your embedding model into the Oracle Database using one of the following methods,
depending where your ONNX file is stored.

a. If your ONNX file is stored locally:
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Using the DBMS_VECTOR package, load your embedding model into the Oracle
Database. You must specify the directory where you stored your model in ONNX
format as well as describe what type of model it is and how you want to use it.

For more information about downloading pretrained embedding models, converting
them into ONNX format, and importing the ONNX file into Oracle Database, see Import
Pretrained Models in ONNX Format.

i. connect vector/<vector user password>@<pdb instance network name>
 
EXEC DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force 
=> true);
 
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('VEC_DUMP', 
                                    'my_embedding_model.onnx', 
                                    'doc_model');

Note:

If you have downloaded the Oracle pre-built ONNX file for the Hugging
Face all-MiniLM-L12-v2 model, you can use the following simplified
command to load the file in the Database:

BEGIN
   DBMS_VECTOR.LOAD_ONNX_MODEL(
        directory => 'DM_DUMP',
        file_name => 'all_MiniLM_L12_v2.onnx',
        model_name => 'ALL_MINILM_L12_V2');
END;
/

b. If your ONNX file is already stored on object store:

i. Create the credentials:

SET DEFINE OFF; 
BEGIN
    DBMS_CLOUD.create_credential(
    credential_name => 'MY_CLOUD_CREDENTIAL',
    username => '<username>',
    password => '<user password>';
END;
/

ii. List the ONNX model saved on Object Storage. The location_uri should
correspond to the location of the ONNX file:

SELECT mod.object_name, 
       round(mod.bytes/1024/1024,2) size_mb, 
       to_date(substr(mod.last_modified,1,18), 'DD-MON-RR 
HH24.MI.SS') modified
  FROM table(dbms_cloud.list_objects(credential_name => 
'CLOUD_CREDENTIAL',
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          location_uri => 'https://
objectstorage.<region>.oraclecloud.com/n/<namespace>/b/
<bucketName>/o/')) mod
  WHERE mod.object_name = 'my_embedding_model.onnx';

iii. Import the model into the database:

DECLARE
  model_source BLOB := NULL;
BEGIN
  model_source := DBMS_CLOUD.get_object(credential_name => 
'MY_CLOUD_CREDENTIAL',
    object_uri => 'https://objectstorage.<region>.oraclecloud.com/n/
<namespace>/b/<bucketName>/o/my_embedding_model.onnx'); 
  DBMS_VECTOR.load_onnx_model('doc_model',
                              model_source);
END;
/

iv. List the model inside the database:

SELECT MODEL_NAME, ATTRIBUTE_NAME, ATTRIBUTE_TYPE, DATA_TYPE, 
VECTOR_INFO
  FROM USER_MINING_MODEL_ATTRIBUTES WHERE MODEL_NAME = 'doc_model';

SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM, ALGORITHM_TYPE, 
MODEL_SIZE
  FROM USER_MINING_MODELS WHERE MODEL_NAME = 'doc_model';

4. (Optional) Verify that the loaded embedding model is working.

You can call the VECTOR_EMBEDDING SQL function to test your embedding model by passing
a sample text string (hello) as the input.

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS 
embedding;

5. Create a relational table to store books in the PDF format.

You now create a table containing all the books you want to chunk and vectorize. You
associate each new book with an ID and a pointer to your local directory where the books
are stored.

drop table documentation_tab purge;
create table documentation_tab (id number, data blob);
insert into documentation_tab values(1, to_blob(bfilename('VEC_DUMP', 
'json-relational-duality-developers-guide.pdf')));
insert into documentation_tab values(2, to_blob(bfilename('VEC_DUMP', 
'oracle-database-23ai-new-features-guide.pdf')));
commit;
select dbms_lob.getlength(data) from documentation_tab;

6. Create a relational table to store unstructured data chunks and associated vector
embeddings using my_embedding_model.onnx.
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You start by creating the table structure using the VECTOR data type. For more information
about declaring a table's column as a VECTOR data type, see Create Tables Using the
VECTOR Data Type .

The INSERT statement reads each PDF file from DOCUMENTATION_TAB, transforms each PDF
file into text, chunks each resulting text, then finally generates corresponding vector
embeddings on each chunk that is created. All that is done in one single INSERT SELECT
statement.

Here you choose to use Vector Utility PL/SQL package DBMS_VECTOR_CHAIN to convert,
chunk, and vectorize your unstructured data in one end-to-end pipeline. Vector Utility
PL/SQL functions are intended to be a set of chainable stages (using table functions)
through which you pass your input data to transform into a different representation. In this
case, from PDF to text to chunks to vectors. For more information about using chainable
utility functions in the DBMS_VECTOR_CHAIN package, see About Chainable Utility Functions
and Common Use Cases.

drop table doc_chunks purge;
create table doc_chunks (doc_id number, chunk_id number, chunk_data 
varchar2(4000), chunk_embedding vector);
 
insert into doc_chunks
select dt.id doc_id, et.embed_id chunk_id, et.embed_data chunk_data, 
to_vector(et.embed_vector) chunk_embedding
from
    documentation_tab dt,
    dbms_vector_chain.utl_to_embeddings(
       
dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data), 
json('{"normalize":"all"}')),
       json('{"provider":"database", "model":"doc_model"}')) t,
    JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH 
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector 
CLOB PATH '$.embed_vector')) et;
 
commit;

See Also:

• Oracle Database JSON Developer’s Guide for information about the
JSON_TABLE function, which supports the VECTOR data type

7. Generate a query vector for use in a similarity search.

For a similarity search you will need query vectors. Here you enter your query text and
generate an associated vector embedding.

For example, you can use the following text: 'different methods of backup and recovery'.
You use the VECTOR_EMBEDDING SQL function to generate the vector embeddings from the
input text. The function takes an embedding model name and a text string to generate the
corresponding vector. Note that you can generate vector embeddings outside of the
database using your favorite tools. For more information about using the
VECTOR_EMBEDDING SQL function, see About SQL Functions to Generate Embeddings.

Chapter 3
SQL Quick Start Using a Vector Embedding Model Uploaded into the Database

3-6



In SQL*Plus, use the following code:

ACCEPT text_input CHAR PROMPT 'Enter text: '
VARIABLE text_variable VARCHAR2(1000)
VARIABLE query_vector VECTOR
BEGIN
  :text_variable := '&text_input';
  SELECT vector_embedding(doc_model using :text_variable as data) 
into :query_vector;
END;
/
 
PRINT query_vector

In SQLCL, use the following code:

DEFINE text_input = '&text'
 
SELECT '&text_input';
 
VARIABLE text_variable VARCHAR2(1000)
VARIABLE query_vector CLOB
BEGIN
  :text_variable := '&text_input';
  SELECT vector_embedding(doc_model using :text_variable as data) 
into :query_vector;
END;
/
 
PRINT query_vector

8. Run a similarity search to find, within your books, the first four most relevant chunks that
talk about backup and recovery.

Using the generated query vector, you search similar chunks in the DOC_CHUNKS table. For
this, you use the VECTOR_DISTANCE SQL function and the FETCH SQL clause to retrieve the
most similar chunks.

For more information about the VECTOR_DISTANCE SQL function, see Vector Distance
Functions and Operators.

For more information about exact similarity search, see Perform Exact Similarity Search.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;

You can also add a WHERE clause to further filter your search, for instance if you only want
to look at one particular book.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
WHERE doc_id=1
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ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;

9. Use the EXPLAIN PLAN command to determine how the optimizer resolves this query.

EXPLAIN PLAN FOR
SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 4 ROWS ONLY;
 
select plan_table_output from 
table(dbms_xplan.display('plan_table',null,'all'));

PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
---
Plan hash value: 1651750914
---------------------------------------------------------------------------
----------------------
| Id  | Operation               | Name          | Rows  | Bytes |TempSpc| 
Cost (%CPU)| Time     |
---------------------------------------------------------------------------
----------------------
|   0 | SELECT STATEMENT        |               |     4 |   104 |       
|   549   (3)| 00:00:01 |
|*  1 |  COUNT STOPKEY          |               |       |       |       
|            |          |
|   2 |   VIEW                  |               |  5014 |   127K|       
|   549   (3)| 00:00:01 |
|*  3 |    SORT ORDER BY STOPKEY|               |  5014 |   156K|   
232K|   549   (3)| 00:00:01 |
|   4 |     TABLE ACCESS FULL   | DOC_CHUNKS    |  5014 |   156K|       
|   480   (3)| 00:00:01 |
---------------------------------------------------------------------------
----------------------

10. Run a multi-vector similarity search to find, within your books, the first four most relevant
chunks in the first two most relevant books.

Here you keep using the same query vector as previously used.

For more information about performing multi-vector similarity search, see Perform Multi-
Vector Similarity Search.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH FIRST 2 PARTITIONS BY doc_id, 4 ROWS ONLY;

11. Create an In-Memory Neighbor Graph Vector Index on the vector embeddings that you
created.

When dealing with huge vector embedding spaces, you may want to create vector indexes
to accelerate your similarity searches. Instead of scanning each and every vector
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embedding in your table, a vector index uses heuristics to reduce the search space to
accelerate the similarity search. This is called approximate similarity search.

For more information about creating vector indexes, see Create Vector Indexes and Hybrid
Vector Indexes.

Note:

You must have explicit SELECT privilege to select from the VECSYS.VECTOR$INDEX
table, which gives you detailed information about your vector indexes.

create vector index docs_hnsw_idx on doc_chunks(chunk_embedding)
organization inmemory neighbor graph
distance COSINE
with target accuracy 95;
 
SELECT INDEX_NAME, INDEX_TYPE, INDEX_SUBTYPE
FROM USER_INDEXES;

Result:

INDEX_NAME     INDEX_TYPE  INDEX_SUBTYPE
-------------- ----------- -----------------------------
DOCS_HNSW_IDX  VECTOR      INMEMORY_NEIGHBOR_GRAPH_HNSW

 SELECT JSON_SERIALIZE(IDX_PARAMS returning varchar2 PRETTY)
FROM VECSYS.VECTOR$INDEX where IDX_NAME = 'DOCS_HNSW_IDX';

Result:

JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
________________________________________________________________
{
  "type" : "HNSW",
  "num_neighbors" : 32,
  "efConstruction" : 300,
  "distance" : "COSINE",
  "accuracy" : 95,
  "vector_type" : "FLOAT32",
  "vector_dimension" : 384,
  "degree_of_parallelism" : 1,
  "pdb_id" : 3,
  "indexed_col" : "CHUNK_EMBEDDING"
}

12. Determine the memory allocation in the vector memory area.

To get an idea about the size of your In-Memory Neighbor Graph Vector Index in memory,
you can use the V$VECTOR_MEMORY_POOL view. See Size the Vector Pool for more
information about sizing the vector pool to allow for vector index creation and maintenance.
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Note:

You must have explicit SELECT privilege to select from the V$VECTOR_MEMORY_POOL
view, which gives you detailed information about the vector pool.

select CON_ID, POOL, ALLOC_BYTES/1024/1024 as ALLOC_BYTES_MB, 
USED_BYTES/1024/1024 as USED_BYTES_MB
from V$VECTOR_MEMORY_POOL order by 1,2;

13. Run an approximate similarity search to identify, within your books, the first four most
relevant chunks.

Using the previously generated query vector, you search chunks in the DOC_CHUNKS table
that are similar to your query vector. For this, you use the VECTOR_DISTANCE function and
the FETCH APPROX SQL clause to retrieve the most similar chunks using your vector index.

For more information about approximate similarity search, see Perform Approximate
Similarity Search Using Vector Indexes.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

You can also add a WHERE clause to further filter your search, for instance if you only want
to look at one particular book.

SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
WHERE doc_id=1
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

14. Use the EXPLAIN PLAN command to determine how the optimizer resolves this query.

See Optimizer Plans for Vector Indexes for more information about how the Oracle
Database optimizer uses vector indexes to run your approximate similarity searches.

EXPLAIN PLAN FOR
SELECT doc_id, chunk_id, chunk_data
FROM doc_chunks
ORDER BY vector_distance(chunk_embedding , :query_vector, COSINE)
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;
 
select plan_table_output from 
table(dbms_xplan.display('plan_table',null,'all'));

PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
-----
Plan hash value: 2946813851
---------------------------------------------------------------------------
-----------------------------
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| Id  | Operation                      | Name          | Rows  | Bytes |
TempSpc| Cost (%CPU)| Time     |
---------------------------------------------------------------------------
-----------------------------
|   0 | SELECT STATEMENT               |               |     4 |   104 
|       |   12083 (2)| 00:00:01 |
|*  1 |  COUNT STOPKEY                 |               |       |       
|       |            |          |
|   2 |   VIEW                         |               |  5014 |   
127K|       |   12083 (2)| 00:00:01 |
|*  3 |    SORT ORDER BY STOPKEY       |               |  5014 |    
19M|    39M|   12083 (2)| 00:00:01 |
|   4 |     TABLE ACCESS BY INDEX ROWID| DOC_CHUNKS    |  5014 |    
19M|       |    1    (0)| 00:00:01 |
|   5 |      VECTOR INDEX HNSW SCAN    | DOCS_HNSW_IDX |  5014 |    
19M|       |    1    (0)| 00:00:01 |
---------------------------------------------------------------------------
-----------------------------

15. Determine your vector index performance for your approximate similarity searches.

The index accuracy reporting feature allows you to determine the accuracy of your vector
indexes. After a vector index is created, you may be interested to know how accurate your
approximate vector searches are.

The DBMS_VECTOR.INDEX_ACCURACY_QUERY PL/SQL procedure provides an accuracy report
for a top-K index search for a specific query vector and a specific target accuracy. In this
case you keep using the query vector generated previously. For more information about
index accuracy reporting, see Index Accuracy Report.

SET SERVEROUTPUT ON
DECLARE 
    report VARCHAR2(128);
BEGIN 
    report := dbms_vector.index_accuracy_query(
        OWNER_NAME => 'VECTOR', 
        INDEX_NAME => 'DOCS_HNSW_IDX',
        qv => :query_vector,
        top_K => 10, 
        target_accuracy => 90 );
    dbms_output.put_line(report); 
END; 
/

The report looks like the following: Accuracy achieved (100%) is 10% higher than the
Target Accuracy requested (90%).

16. You are now going to create a new table that will be used to run hybrid searches.

DROP TABLE documentation_tab2 PURGE;

CREATE TABLE documentation_tab2 (id NUMBER, file_name VARCHAR2(200));

INSERT INTO documentation_tab2 VALUES(1, 'json-relational-duality-
developers-guide.pdf');

INSERT INTO documentation_tab2 VALUES(2, 'oracle-database-23ai-new-
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features-guide.pdf');

COMMIT;

17. To create a hybrid vector index, you need to specify your data store where your files
reside. Here we are using the VEC_DUMP directory where the PDF files are stored:

BEGIN
  ctx_ddl.create_preference('DS', 'DIRECTORY_DATASTORE');
  ctx_ddl.set_attribute('DS', 'DIRECTORY', 'VEC_DUMP');
END;
/

18. You can now create a hybrid vector index on the documentation_tab2 table. Here, you
indicate to the hybrid vector index where to find the files that need to be indexed and the
types that will be filtered, as well as which embedding model to use and which type of
vector index. For more information, see Understand Hybrid Vector Indexes.

CREATE HYBRID VECTOR INDEX my_hybrid_vector_idx ON 
documentation_tab2(file_name)
  PARAMETERS ('
                 DATASTORE      DS
                 FILTER         CTXSYS.AUTO_FILTER
                 MODEL          doc_model
                 VECTOR_IDXTYPE ivf
');

19. Once the hybrid vector index has been created, check the following internal tables that
were created:

SELECT COUNT(*) FROM DR$my_hybrid_vector_idx$VR;

Result:

   COUNT(*)
___________
       9581

or

SELECT COUNT(*) FROM my_hybrid_vector_idx$VECTORS;

Result:

   COUNT(*)
___________
       9581

DESC my_hybrid_vector_idx$VECTORS
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Result:

Name                   Null?       Type
______________________ ___________ _________________
DOC_ROWID              NOT NULL    ROWID
DOC_CHUNK_ID           NOT NULL    NUMBER
DOC_CHUNK_COUNT        NOT NULL    NUMBER
DOC_CHUNK_OFFSET       NOT NULL    NUMBER
DOC_CHUNK_LENGTH       NOT NULL    NUMBER
DOC_CHUNK_TEXT                     VARCHAR2(4000)
DOC_CHUNK_EMBEDDING                VECTOR

SELECT COUNT(*) FROM DR$MY_HYBRID_VECTOR_IDX$I;

Result:

   COUNT(*)
___________
       4927

20. You can run your first hybrid search by specifying the following parameters:

• The hybrid vector index name

• The search scorer you want to use (this scoring function is used after merging results
from keyword search and similarity search)

• The fusion function to use to merge the results from both searches

• The search text you want for your similarity search

• The search mode to use to produce the vector search results

• The aggregation function to use to calculate the vector score for each document
identified by your similarity search

• The score weight for your vector score

• The CONTAINS string for your keyword search

• The score weight for your keyword search

• The returned max values you want to see

• The maximum number of documents and chunks you want to see in the result

For complete DBMS_HYBRID_VECTOR.SEARCH syntax information, see SEARCH.

SET LONG 10000

SELECT json_serialize(
    DBMS_HYBRID_VECTOR.SEARCH(
      JSON(
           '{
              "hybrid_index_name" : "my_hybrid_vector_idx",
              "search_scorer"     : "rsf",
              "search_fusion"     : "UNION",
              "vector":
                        {
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                          "search_text"   : How to insert data in json 
format to a table?",
                          "search_mode"   : "DOCUMENT",
                          "aggregator"    : "MAX",
                          "score_weight"  : 1,
                        },
              "text":
                        {
                         "contains"      : "data AND json",
                         "score_weight"  : 1,
                        },
              "return":
                        {
                          "values"        : [ "rowid", "score", 
"vector_score", "text_score" ],
                          "topN"          : 10
                        }
            }'
      )
   ) RETURNING CLOB pretty);

Result:

JSON_SERIALIZE(DBMS_HYBRID_VECTOR.SEARCH(JSON('{"HYBRID_INDEX_NAME":"MY_HYB
RID_VECTOR_IDX","SEARCH_SCORER":"RSF","SEARCH_FUSION":"UNION","VECTOR":
{"SEARCH_TEXT":"HOWTOSEARCHUSINGVECTORINDEXES?","SEARCH_MODE":"DOCUMENT","A
GGREGATOR":"MAX","SCORE_WEIGHT
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
_____________________________
[
  {
    "rowid" : "AAASd4AALAAAFjYAAB",
    "score" : 88.77,
    "vector_score" : 77.53,
    "text_score" : 100
  }
]

Note:

Before executing the following statement, replace the rowid value that you got
from running the previous statement.

SELECT file_name FROM documentation_tab2 WHERE rowid='AAASd4AALAAAFjYAAB';
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Result:

FILE_NAME
__________________________________________
json-relational-duality-developers-guide.pdf

Note:

In this step, a lot of parameters were explicitly indicated. However, you can stick
to the defaults and run the following statement instead.

SELECT json_serialize(
     DBMS_HYBRID_VECTOR.SEARCH(
        JSON(
             '{
               "hybrid_index_name" : "my_hybrid_vector_idx",
               "search_text"       : "How to insert data in json format to 
a table?"
             }'
            )
    ) RETURNING CLOB pretty);

21. Hybrid vector index maintenance is done automatically in the background at two levels.
Every 3 seconds, an index synchronization is run to maintain the index with ongoing DMLs.
The index maintenance can take much more time depending on the number of DMLs and
files added. So, you may not see your modifications right away as you will experience in
this scenario. A scheduler job is also run every night at midnight to optimize the index. As
you run DMLs on your index, the index gets fragmented. The optimize job defragments
your index for better query performance.

To experiment with hybrid vector index maintenance, insert a new row in your base table
and run the same hybrid search query as you did in the previous step:

INSERT INTO documentation_tab2 VALUES(3, 'json-relational-duality-
developers-guide.pdf');

COMMIT;

SELECT json_serialize(
    DBMS_HYBRID_VECTOR.SEARCH(
      JSON(
           '{
              "hybrid_index_name" : "my_hybrid_vector_idx",
              "search_scorer"     : "rsf",
              "search_fusion"     : "UNION",
              "vector":
                        {
                          "search_text"   : "How to insert data in json 
format to a table?",
                          "search_mode"   : "DOCUMENT",
                          "aggregator"    : "MAX",
                          "score_weight"  : 1,
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                        },
              "text":
                        {
                         "contains"      : "data AND json",
                         "score_weight"  : 1,
                        },
              "return":
                        {
                          "values"        : [ "rowid", "score", 
"vector_score", "text_score" ],
                          "topN"          : 10
                        }
            }'
      )
   ) RETURNING CLOB pretty);

You should observe no changes in the result:

JSON_SERIALIZE(DBMS_HYBRID_VECTOR.SEARCH(JSON('{"HYBRID_INDEX_NAME":"MY_HYB
RID_VECTOR_IDX","SEARCH_SCORER":"RSF","SEARCH_FUSION":"UNION","VECTOR":
{"SEARCH_TEXT":"HOWTOSEARCHUSINGVECTORINDEXES?","SEARCH_MODE":"DOCUMENT","A
GGREGATOR":"MAX","SCORE_WEIGHT
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
_____________________________
[
  {
    "rowid" : "AAASd4AALAAAFjYAAB",
    "score" : 88.77,
    "vector_score" : 77.53,
    "text_score" : 100
  }
]

22. Wait several minutes and rerun your hybrid search.

SELECT json_serialize(
    DBMS_HYBRID_VECTOR.SEARCH(
      JSON(
           '{
              "hybrid_index_name" : "my_hybrid_vector_idx",
              "search_scorer"     : "rsf",
              "search_fusion"     : "UNION",
              "vector":
                        {
                          "search_text"   : "How to insert data in json 
format to a table?",
                          "search_mode"   : "DOCUMENT",
                          "aggregator"    : "MAX",
                          "score_weight"  : 1,
                        },
              "text":
                        {
                         "contains"      : "data AND json",
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                         "score_weight"  : 1,
                        },
              "return":
                        {
                          "values"        : [ "rowid", "score", 
"vector_score", "text_score" ],
                          "topN"          : 10
                        }
            }'
      )
   ) RETURNING CLOB pretty);

By this point, the result has been updated:

JSON_SERIALIZE(DBMS_HYBRID_VECTOR.SEARCH(JSON('{"HYBRID_INDEX_NAME":"MY_HYB
RID_VECTOR_IDX","SEARCH_SCORER":"RSF","SEARCH_FUSION":"UNION","VECTOR":
{"SEARCH_TEXT":"HOWTOSEARCHUSINGVECTORINDEXES?","SEARCH_MODE":"DOCUMENT","A
GGREGATOR":"MAX","SCORE_WEIGHT
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
_____________________________
[
  {
    "rowid" : "AAASd4AALAAAFjYAAB",
    "score" : 88.77,
    "vector_score" : 77.53,
    "text_score" : 100
  },
  {
    "rowid" : "AAASd4AALAAAFjYAAC",
    "score" : 88.77,
    "vector_score" : 77.53,
    "text_score" : 100
  }
]

SQL Quick Start Using a FLOAT32 Vector Generator
A PL/SQL program that creates a vector generator is included along with example queries and
results, providing a simple way to get started with Oracle AI Vector Search without a vector
embedding model.

The generator is a PL/SQL program that allows you to randomly generate vectors with a
specified number of dimensions and clusters. Each dimension value is generated using
specified minimum and maximum possible values. The output of the generation process is the
population of a table called genvec that you can then use, for example, to experiment with
similarity searches.

The following instructions assume you already have access to a database account with
sufficient privileges (minimally the DB_DEVELOPER_ROLE role).
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Note:

Do not use the vector generator on production databases. The program is made
available for testing and demo purposes.

1.

2. Create the genvec table.

DROP TABLE genvec PURGE;

CREATE TABLE genvec (
  id number,           -- id of the generated vector
  v VECTOR,            -- generated vector
  name VARCHAR2(500),  -- name for the generated vector: C1 to Cn are 
centroids, Cx_y is vector number y in cluster number x
  nv VECTOR,           -- normalized version of the generated vector
  ly number            -- random number you can use to filter out rows in 
addition to similarity search on vectors
);

3. Create the package vector_gen_pkg and its associated package body.

Here you create the vector generator package:

CREATE OR REPLACE PACKAGE vector_gen_pkg AS

  TYPE t_vectors IS TABLE OF vector INDEX BY PLS_INTEGER;

  FUNCTION get_coordinate(
    input_string CLOB,
    i PLS_INTEGER
  ) RETURN NUMBER;

  PROCEDURE generate_vectors(
    num_vectors IN PLS_INTEGER,  -- Number of vectors to generate
    dimensions IN PLS_INTEGER,   -- Number of dimensions of each vector
    num_clusters IN PLS_INTEGER, -- Number of clusters to create
    cluster_spread IN NUMBER,    -- Relative closeness of each vector in 
each cluster (using standard deviation)
    min_value IN NUMBER,         -- Minimum value for a vector coordinate
    max_value IN NUMBER          -- Maximum value for a vector coordinate
  );

END vector_gen_pkg;
/

And the package body:

CREATE OR REPLACE PACKAGE BODY vector_gen_pkg AS

  -------------------------------------------
  -------------------------------------------
  ---- V E C T O R    G E N E R A T O R -----
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  -------------------------------------------
  -------------------------------------------
  -- Version 1.0                    ---------
  -------------------------------------------
  -------------------------------------------
  ---- DO NOT USE ON PRODUCTION DATABASES ---
  ---- ONLY FOR TESTING AND DEMO PURPOSES ---
  -------------------------------------------

  FUNCTION get_coordinate(
    input_string CLOB,
    i PLS_INTEGER
  ) RETURN NUMBER IS
    start_pos NUMBER;
    end_pos NUMBER;
    comma_pos NUMBER;
    coord VARCHAR2(100);
    comma_count NUMBER := 0;
    commas NUMBER;
    working_string CLOB;
  BEGIN
    -- Remove leading and trailing brackets
    working_string := input_string;
    working_string := TRIM(BOTH '[]' FROM working_string);
    commas := LENGTH(working_string) - LENGTH(REPLACE(working_string, ',', 
''));

    -- Initialize positions
    start_pos := 1;
    end_pos := INSTR(working_string, ',', start_pos);
  
    IF i<=0 OR i>commas+1 THEN RETURN NULL;
    END IF;

    -- Loop through the string to find the i-th coordinate
    LOOP
      IF comma_count + 1 = i THEN
        IF end_pos = 0 THEN
          -- If there's no more comma, the coordinate is the rest of the 
string
          coord := SUBSTR(working_string, start_pos);
        ELSE
          coord := SUBSTR(working_string, start_pos, end_pos - start_pos);
        END IF;
        RETURN coord;
      END IF;

      -- Move to the next coordinate
      comma_count := comma_count + 1;
      start_pos := end_pos + 1;
      end_pos := INSTR(working_string, ',', start_pos);

      -- Exit loop if no more coordinates
      EXIT WHEN start_pos > LENGTH(working_string);
    END LOOP;
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    -- If the function hasn't returned yet, the index was out of bounds
    RETURN NULL;

  END;

  PROCEDURE generate_random_vector(
    dimensions IN PLS_INTEGER,
    min_value IN NUMBER,
    max_value IN NUMBER,
    vec OUT vector
    ) IS
    e CLOB;
  BEGIN
    e := '[';
    FOR i IN 1..dimensions-1 LOOP
      e := e || DBMS_RANDOM.VALUE(min_value, max_value) ||',';
    END LOOP;
    e := e || DBMS_RANDOM.VALUE(min_value, max_value) ||']';
    vec := VECTOR(e);
  END generate_random_vector;

  PROCEDURE generate_clustered_vector(
    centroid IN vector,
    cluster_spread IN NUMBER,
    vec OUT vector
  ) IS
    e CLOB;
    d number;
    BEGIN
      d := VECTOR_DIMENSION_COUNT(centroid);
      e := '[';
      FOR i IN 1 .. d-1 LOOP
        e := e || (get_coordinate(to_clob(centroid),i) + 
(DBMS_RANDOM.NORMAL * cluster_spread)) ||',';
      END LOOP;
      e := e || 
(get_coordinate(to_clob(centroid),VECTOR_DIMENSION_COUNT(centroid)) + 
(DBMS_RANDOM.NORMAL * cluster_spread)) || ']';
      vec := VECTOR(e);
  END generate_clustered_vector;

  FUNCTION normalize_vector(vec IN vector) RETURN vector IS
    e CLOB;
    v CLOB;
    n number;
    d number;
  BEGIN
    n := VECTOR_NORM(vec);
    v := to_clob(vec);
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    d := VECTOR_DIMENSION_COUNT(vec);
    e := '[';
    FOR i IN 1 .. d-1 LOOP
      e := e || (get_coordinate(v,i)/n) ||',';
    END LOOP;
    e := e || (get_coordinate(v,d)/n) || ']';
    RETURN VECTOR(e);
  END normalize_vector;

  PROCEDURE generate_vectors(
    num_vectors IN PLS_INTEGER,  -- Must be 1 or above
    dimensions IN PLS_INTEGER,   -- Must be above 1 but less than 500
    num_clusters IN PLS_INTEGER, -- Must be 1 or above
    cluster_spread IN NUMBER,    -- Must be grather than 0
    min_value IN NUMBER,
    max_value IN NUMBER
  ) IS
    centroids t_vectors;
    vectors_per_cluster PLS_INTEGER;
    remaining_vectors PLS_INTEGER;
    vec vector;
    idx PLS_INTEGER := 1;
    max_id NUMBER;
    working_vector VECTOR;

  BEGIN
    IF (num_vectors) <=0 OR (num_clusters < 1) OR (num_vectors < 
num_clusters) OR (dimensions <= 0) OR (dimensions > 500) OR 
(cluster_spread <= 0) OR (min_value >= max_value) THEN RETURN;
    END IF;

    SELECT MAX(id) INTO max_id FROM genvec;
    IF max_id IS NULL THEN max_id := 0;
    END IF;

    -- Generate cluster centroids
    FOR i IN 1..num_clusters LOOP

      generate_random_vector(dimensions, min_value, max_value, 
centroids(i));
      working_vector := normalize_vector(centroids(i));
      INSERT INTO genvec VALUES (max_id + idx, centroids(i), 'C'||i, 
working_vector, DBMS_RANDOM.VALUE(3,600000000));
      idx := idx + 1;

    END LOOP;

    -- Calculate vectors per cluster
    vectors_per_cluster := TRUNC(num_vectors / num_clusters);
    remaining_vectors := num_vectors MOD num_clusters;

    -- Generate vectors for each cluster
    IF vectors_per_cluster > 1 THEN
      FOR i IN 1..num_clusters LOOP
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        FOR j IN 1..(vectors_per_cluster - 1) LOOP
          generate_clustered_vector(centroids(i), cluster_spread, vec);
          working_vector := normalize_vector(vec);
          INSERT INTO genvec VALUES (max_id + idx, vec, 'C'||i||'-'||j, 
working_vector, DBMS_RANDOM.VALUE(3,600000000));
          idx := idx + 1;
        END LOOP;
      END LOOP;
    END IF;

    -- Handle remaining vectors: all associated with cluster 1
    IF remaining_vectors > 0 THEN
      FOR j IN 1..remaining_vectors LOOP
        generate_clustered_vector(centroids(1), cluster_spread, vec);
        working_vector := normalize_vector(vec);
        INSERT INTO genvec VALUES (max_id + idx, vec, 'C1-'||idx, 
working_vector, DBMS_RANDOM.VALUE(3,600000000));
        idx := idx + 1;
      END LOOP;
    END IF;
    COMMIT;
  END generate_vectors;

END vector_gen_pkg;
/

4. After you have your vector generator set up, you can run this and the following steps to
understand how to use it.

Run the generate_vectors procedure of the vector_gen_pkg package with sample values:

BEGIN
  vector_gen_pkg.generate_vectors(
    num_vectors => 100,   -- Number of vectors to generate. Must be 1 or 
above
    dimensions => 3,      -- Number of dimensions of each vector. Must be 
above 1 but less than 500
    num_clusters => 6,    -- Number of clusters to create. Must be 1 or 
above
    cluster_spread => 1,  -- Relative closeness of each vector in each 
cluster (using standard deviation). Must be grather than 0
    min_value => 0,       -- Minimum value for a vector coordinate
    max_value => 100      -- Maximum value for a vector coordinate. Min 
value must be smaller than max value
  );
END;
/

5. Run a SELECT statement to view the newly generated vectors.

SELECT name, v FROM genvec;
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Example output:

NAME    V
_______ ____________________________________________________
C1      [6.35792809E+001,5.28954163E+001,5.16500435E+001]
C2      [5.67991257E+001,5.00640755E+001,2.3642437E+001]
C3      [2.42510891E+001,5.36970367E+001,6.88145638E+000]
C4      [8.13146515E+001,2.88190498E+001,4.09245186E+001]
C5      [6.70646744E+001,2.53395119E+001,6.14522667E+001]
C6      [5.60192604E+001,8.31662598E+001,2.93592377E+001]
C1-1    [6.4469986E+001,5.25044632E+001,5.22250557E+001]
C1-2    [6.31295433E+001,5.21443062E+001,5.02242126E+001]
C1-3    [6.25154915E+001,5.25730362E+001,5.2617794E+001]
C1-4    [6.3491375E+001,5.21440697E+001,5.06722069E+001]
C1-5    [6.21516266E+001,5.32161064E+001,5.23233032E+001]
C1-6    [6.2913269E+001,5.16970291E+001,5.16683655E+001]
C1-7    [6.22267456E+001,5.40408363E+001,5.0272541E+001]
C1-8    [6.1414093E+001,5.28870888E+001,5.27458E+001]

NAME     V
________ ____________________________________________________
C1-9     [6.29652252E+001,5.32767754E+001,5.27030106E+001]
C1-10    [6.35940704E+001,5.27265244E+001,5.23180656E+001]
C1-11    [6.34133224E+001,5.39401283E+001,5.29368248E+001]
C1-12    [6.18856697E+001,5.31113129E+001,5.18861504E+001]
C1-13    [6.32378883E+001,5.30308647E+001,5.04571724E+001]
C1-14    [6.18148689E+001,5.33705482E+001,5.29123802E+001]
C1-15    [6.43224258E+001,5.23124084E+001,5.21299057E+001]
C2-1     [5.59053535E+001,5.20054626E+001,2.28595486E+001]
C2-2     [5.71644516E+001,5.13243408E+001,2.31167526E+001]
C2-3     [5.66626244E+001,5.00615959E+001,2.27138176E+001]
C2-4     [5.73383865E+001,5.04509125E+001,2.36539135E+001]
C2-5     [5.6621357E+001,5.01576767E+001,2.38867531E+001]
C2-6     [5.59768562E+001,5.17590942E+001,2.49088764E+001]
C2-7     [5.64437904E+001,4.71531525E+001,2.23245487E+001]

NAME     V
________ ____________________________________________________
C2-8     [5.81449051E+001,5.09049644E+001,2.29072056E+001]
C2-9     [5.37190132E+001,4.87386665E+001,2.28188381E+001]
C2-10    [5.77416382E+001,4.93461685E+001,2.32014389E+001]
C2-11    [5.68353958E+001,5.11093979E+001,2.43693123E+001]
C2-12    [5.79631157E+001,5.0297657E+001,2.28039799E+001]
C2-13    [5.57930183E+001,5.11965866E+001,2.35887661E+001]
C2-14    [5.57345848E+001,5.03228951E+001,2.30780907E+001]
C2-15    [5.69435997E+001,4.8590435E+001,2.58747597E+001]
C3-1     [2.40239315E+001,5.2352993E+001,5.63517284E+000]
C3-2     [2.39717846E+001,5.30635986E+001,5.86633539E+000]
C3-3     [2.70314407E+001,5.48788643E+001,7.96345377E+000]
C3-4     [2.39875908E+001,5.39634552E+001,5.87654877E+000]
C3-5     [2.47772026E+001,5.2187336E+001,6.83652115E+000]
C3-6     [2.32920208E+001,5.41494293E+001,6.40737772E+000]

NAME     V
________ ____________________________________________________
C3-7     [2.46129742E+001,5.32308769E+001,6.29999685E+000]
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C3-8     [2.51000671E+001,5.33271561E+001,8.86797047E+000]
C3-9     [2.4337059E+001,5.26281281E+001,6.9616766E+000]
C3-10    [2.39770508E+001,5.42386856E+001,5.63018417E+000]
C3-11    [2.59837551E+001,5.34013176E+001,6.97773361E+000]
C3-12    [2.40400314E+001,5.25649719E+001,7.2636981E+000]
C3-13    [2.13184013E+001,5.28633308E+001,8.3834734E+000]
C3-14    [2.50075855E+001,5.21548729E+001,6.88196087E+000]
C3-15    [2.53695087E+001,5.60495186E+001,6.76059389E+000]
C4-1     [8.28819885E+001,2.95163822E+001,4.03809738E+001]
C4-2     [8.18269348E+001,2.95735188E+001,3.99435768E+001]
C4-3     [8.2709259E+001,2.90755043E+001,4.07345886E+001]
C4-4     [8.18622665E+001,2.88013916E+001,4.1822567E+001]
C4-5     [7.99165421E+001,2.89941139E+001,4.09653854E+001]

NAME     V
________ ____________________________________________________
C4-6     [8.12936707E+001,2.98655643E+001,4.00380211E+001]
C4-7     [8.21705704E+001,2.90163479E+001,3.94858704E+001]
C4-8     [8.20081329E+001,2.89751148E+001,4.1045887E+001]
C4-9     [8.25486298E+001,2.84143009E+001,4.15654945E+001]
C4-10    [8.22034149E+001,2.92223415E+001,4.20033302E+001]
C4-11    [8.2048996E+001,2.98751106E+001,4.09612732E+001]
C4-12    [8.09316025E+001,2.7799057E+001,4.12611198E+001]
C4-13    [8.04624023E+001,2.88711109E+001,4.07331085E+001]
C4-14    [8.13773575E+001,2.97510109E+001,4.09169846E+001]
C4-15    [8.35310364E+001,2.971031E+001,4.16878052E+001]
C5-1     [6.87114258E+001,2.53504581E+001,6.11055298E+001]
C5-2     [6.73569031E+001,2.35163498E+001,6.01617432E+001]
C5-3     [6.78224869E+001,2.61236534E+001,6.0729248E+001]
C5-4     [6.76432266E+001,2.56426888E+001,6.35400085E+001]

NAME     V
________ ____________________________________________________
C5-5     [6.75377045E+001,2.60873699E+001,6.35584145E+001]
C5-6     [6.84944687E+001,2.51576214E+001,6.24934502E+001]
C5-7     [6.79246216E+001,2.53722992E+001,6.32098122E+001]
C5-8     [6.84075165E+001,2.63778133E+001,6.10950584E+001]
C5-9     [6.73214798E+001,2.70551453E+001,6.27835197E+001]
C5-10    [6.50006485E+001,2.67408028E+001,6.07828026E+001]
C5-11    [6.68869705E+001,2.3982399E+001,6.13440819E+001]
C5-12    [6.55524521E+001,2.42231808E+001,6.07235756E+001]
C5-13    [6.72140808E+001,2.42842178E+001,6.21546478E+001]
C5-14    [6.89587936E+001,2.67715569E+001,6.08621559E+001]
C5-15    [6.68405685E+001,2.44039059E+001,6.12652893E+001]
C6-1     [5.4925251E+001,8.28179474E+001,3.0869236E+001]
C6-2     [5.52922363E+001,8.23375549E+001,2.94804363E+001]
C6-3     [5.60466652E+001,8.18454132E+001,2.99774895E+001]

NAME     V
________ ____________________________________________________
C6-4     [5.74460373E+001,8.26830368E+001,2.86887722E+001]
C6-5     [5.57439041E+001,8.14622726E+001,2.94924259E+001]
C6-6     [5.4913372E+001,8.48766251E+001,2.92711105E+001]
C6-7     [5.66876144E+001,8.25907898E+001,2.84199276E+001]
C6-8     [5.6253479E+001,8.3280838E+001,2.69524212E+001]
C6-9     [5.50792351E+001,8.37676392E+001,3.08755417E+001]
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C6-10    [5.57719955E+001,8.11036758E+001,2.92569256E+001]
C6-11    [5.60834808E+001,8.3103096E+001,3.09748001E+001]
C6-12    [5.58962059E+001,8.3612648E+001,2.95026093E+001]
C6-13    [5.73348083E+001,8.26950226E+001,2.88242455E+001]
C6-14    [5.45099411E+001,8.33315659E+001,2.90559101E+001]
C6-15    [5.57930641E+001,8.5720871E+001,2.92863998E+001]
C1-97    [6.3716671E+001,5.41518326E+001,5.18371048E+001]
C1-98    [6.58774261E+001,5.32223206E+001,5.05089798E+001]

NAME      V
_________ ____________________________________________________
C1-99     [6.31867676E+001,5.25712204E+001,5.16621819E+001]
C1-100    [6.20503845E+001,5.15550919E+001,5.08155479E+001]

100 rows selected.

To visualize the resulting vectors in space, consider the following graph:
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Figure 3-1    Vector Clusters

6. Run a similarity search on the generated vectors in the genvec table.

First define a variable called cluster_number to be used to form the name of the vector in
the query.

DEFINE cluster_number = '&clusterid'

You will be prompted to enter a value for clusterid. In this example, we use 5:

Enter value for clusterid: 5
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Run the following query to perform a similarity search on the generated vectors:

SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v,(SELECT v FROM genvec WHERE 
name='C'||'&cluster_number'),EUCLIDEAN)
  FETCH EXACT FIRST 20 ROWS ONLY;

Example output:

NAME
________
C5
C5-15
C5-13
C5-3
C5-11
C5-1
C5-8
C5-6
C5-7
C5-12
C5-9
C5-4
C5-2
C5-5

NAME
________
C5-14
C5-10
C4-5
C4-12
C4-4
C4-13

20 rows selected.

7. Here is another example of running a similarity search on the generated vectors, this time
using the Cosine distance metric.

SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v,(SELECT v FROM genvec WHERE 
name='C'||'&cluster_number'),COSINE)
  FETCH EXACT FIRST 20 ROWS ONLY;

Example output:

NAME
________
C5
C5-6
C5-12

Chapter 3
SQL Quick Start Using a FLOAT32 Vector Generator

3-27



C5-15
C5-7
C5-4
C5-5
C5-13
C5-11
C5-3
C5-1
C5-8
C5-9
C5-2

NAME
________
C5-14
C5-10
C4-5
C4-4
C4-10
C4-12

20 rows selected.

8. Create a variable called query_vector and then use SELECT INTO to store a vector value in
the variable.

VARIABLE query_vector CLOB

BEGIN
  SELECT v INTO :query_vector 
  FROM genvec 
  WHERE name='C'||'&cluster_number';
END;
/

PRINT query_vector;

Example output:

QUERY_VECTOR
--------------------------------------------------------------------
[6.70646744E+001,2.53395119E+001,6.14522667E+001]

9. Create an explain plan for a similarity search using the query vector created in the previous
step.

EXPLAIN PLAN FOR
  SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v, :query_vector, EUCLIDEAN)
  FETCH EXACT FIRST 20 ROWS ONLY;

SELECT plan_table_output
  FROM table(dbms_xplan.display('plan_table',null,'all'));
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Example output:

PLAN_TABLE_OUTPUT
___________________________________________________________________________
__________
Plan hash value: 1549136425

---------------------------------------------------------------------------
-------
| Id  | Operation               | Name   | Rows  | Bytes | Cost (%CPU)| 
Time     |
---------------------------------------------------------------------------
-------
|   0 | SELECT STATEMENT        |        |    20 |  5040 |     4  (25)| 
00:00:01 |
|*  1 |  COUNT STOPKEY          |        |       |       |            
|          |
|   2 |   VIEW                  |        |   100 | 25200 |     4  (25)| 
00:00:01 |
|*  3 |    SORT ORDER BY STOPKEY|        |   100 | 25800 |     4  (25)| 
00:00:01 |
|   4 |     TABLE ACCESS FULL   | GENVEC |   100 | 25800 |     3   (0)| 
00:00:01 |
---------------------------------------------------------------------------
-------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------

PLAN_TABLE_OUTPUT
______________________________________________________________

   1 - SEL$2
   2 - SEL$1 / "from$_subquery$_002"@"SEL$2"
   3 - SEL$1
   4 - SEL$1 / "GENVEC"@"SEL$1"

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(ROWNUM<=20)
   3 - filter(ROWNUM<=20)

Column Projection Information (identified by operation id):
-----------------------------------------------------------

PLAN_TABLE_OUTPUT
__________________________________________________________________________

   1 - "from$_subquery$_002"."NAME"[VARCHAR2,500]
   2 - "from$_subquery$_002"."NAME"[VARCHAR2,500]
   3 - (#keys=1) VECTOR_DISTANCE("V" /*+ LOB_BY_VALUE */ ,
       VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ),
       EUCLIDEAN)[BINARY_DOUBLE,8], "NAME"[VARCHAR2,500]
   4 - "NAME"[VARCHAR2,500], VECTOR_DISTANCE("V" /*+ LOB_BY_VALUE */ ,
       VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ),
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       EUCLIDEAN)[BINARY_DOUBLE,8]

Note
-----
   - dynamic statistics used: dynamic sampling (level=2)

41 rows selected.

10. Create an Hierarchical Navigable Small World (HNSW) index.

CREATE VECTOR INDEX genvec_hnsw_idx ON genvec(v)
  ORGANIZATION INMEMORY NEIGHBOR GRAPH
  DISTANCE EUCLIDEAN
  WITH TARGET ACCURACY 95;

SELECT INDEX_NAME, INDEX_TYPE, INDEX_SUBTYPE FROM USER_INDEXES;

Example output:

INDEX_NAME                  INDEX_TYPE    INDEX_SUBTYPE
___________________________ _____________ _______________________________
DM$CEDOC_MODEL              NORMAL
SYS_IL0000073592C00002$$    LOB
GENVEC_HNSW_IDX             VECTOR        INMEMORY_NEIGHBOR_GRAPH_HNSW
SYS_C008694                 NORMAL

4 rows selected.

11. Query information about the HNSW index from the VECSYS.VECTOR$INDEX view.

SELECT JSON_SERIALIZE(IDX_PARAMS RETURNING VARCHAR2 PRETTY)
  FROM VECSYS.VECTOR$INDEX 
  WHERE IDX_NAME = 'GENVEC_HNSW_IDX';

Example output:

JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
_____________________
{
  "type" : "HNSW",
  "num_neighbors" : 32,
  "efConstruction" : 300,
  "distance" : "EUCLIDEAN",
  "accuracy" : 95,
  "vector_type" : "FLOAT32",
  "vector_dimension" : 3,
  "degree_of_parallelism" : 1,
  "pdb_id" : 3,
  "indexed_col" : "V"
}
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For information about the columns of the VECSYS.VECTOR$INDEX view, see 
VECSYS.VECTOR$INDEX.

12. With the HNSW index created, create another explain plan for a similarity search on the
genvec table.

EXPLAIN PLAN FOR
  SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v, :query_vector, EUCLIDEAN)
  FETCH APPROX FIRST 20 rows only;

SELECT plan_table_output 
FROM table(dbms_xplan.display('plan_table',null,'all'));

Example output:

PLAN_TABLE_OUTPUT
___________________________________________________________________________
__________________________________
Plan hash value: 1202819565

---------------------------------------------------------------------------
-------------------------------
| Id  | Operation                      | Name            | Rows  | Bytes |
TempSpc| Cost (%CPU)| Time     |
---------------------------------------------------------------------------
-------------------------------
|   0 | SELECT STATEMENT               |                 |    20 |  5040 
|       |   165   (2)| 00:00:01 |
|*  1 |  COUNT STOPKEY                 |                 |       |       
|       |            |          |
|   2 |   VIEW                         |                 |   100 | 25200 
|       |   165   (2)| 00:00:01 |
|*  3 |    SORT ORDER BY STOPKEY       |                 |   100 |   
425K|   808K|   165   (2)| 00:00:01 |
|   4 |     TABLE ACCESS BY INDEX ROWID| GENVEC          |   100 |   
425K|       |     1   (0)| 00:00:01 |
|   5 |      VECTOR INDEX HNSW SCAN    | GENVEC_HNSW_IDX |   100 |   
425K|       |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------
-------------------------------

Query Block Name / Object Alias (identified by operation id):

PLAN_TABLE_OUTPUT
________________________________________________________________
-------------------------------------------------------------

   1 - SEL$2
   2 - SEL$1 / "from$_subquery$_002"@"SEL$2"
   3 - SEL$1
   4 - SEL$1 / "GENVEC"@"SEL$1"
   5 - SEL$1 / "GENVEC"@"SEL$1"

Predicate Information (identified by operation id):
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---------------------------------------------------

   1 - filter(ROWNUM<=20)
   3 - filter(ROWNUM<=20)

PLAN_TABLE_OUTPUT
___________________________________________________________________________
__________________________
Column Projection Information (identified by operation id):
-----------------------------------------------------------

   1 - "from$_subquery$_002"."NAME"[VARCHAR2,500]
   2 - "from$_subquery$_002"."NAME"[VARCHAR2,500]
   3 - (#keys=1) VECTOR_DISTANCE("V" /*+ LOB_BY_VALUE */ , 
VECTOR(:QUERY_VECTOR, *, * /*+
       USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)[8], "NAME"[VARCHAR2,500]
   4 - "NAME"[VARCHAR2,500], VECTOR_DISTANCE("V" /*+ LOB_BY_VALUE */ , 
VECTOR(:QUERY_VECTOR, *, *
       /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)[8]
   5 - "GENVEC".ROWID[ROWID,10], VECTOR_DISTANCE("V" /*+ LOB_BY_VALUE */ , 
VECTOR(:QUERY_VECTOR,
       *, * /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)[8]

Note
-----

PLAN_TABLE_OUTPUT
___________________________________________________________
   - dynamic statistics used: dynamic sampling (level=2)

43 rows selected.

As you can see, the explain plan now includes information about the HNSW index.

13. Again perform a similarity search on the vectors in the genvec table. Note that it is possible
for query results to vary based on the indexing technique used. The results included in this
scenario are simply an example.

SELECT name
  FROM genvec
  ORDER BY vector_distance(v, :query_vector, EUCLIDEAN)
  FETCH APPROX FIRST 20 ROWS ONLY;

Example output:

NAME
________
C5
C5-15
C5-13
C5-3
C5-11
C5-1
C5-8
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C5-6
C5-7
C5-12
C5-9
C5-4
C5-2
C5-5

NAME
________
C5-14
C5-10
C4-5
C4-12
C4-4
C4-13

20 rows selected.

14. Drop the HNSW index and create an Inverted File Flat (IVF) vector index.

DROP INDEX genvec_hnsw_idx;

CREATE VECTOR INDEX genvec_ivf_idx ON genvec(v) 
  ORGANIZATION NEIGHBOR PARTITIONS
  DISTANCE EUCLIDEAN
  WITH TARGET ACCURACY 95;

SELECT JSON_SERIALIZE(IDX_PARAMS RETURNING VARCHAR2 PRETTY)
  FROM VECSYS.VECTOR$INDEX WHERE IDX_NAME = 'GENVEC_IVF_IDX';

Example output:

JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
____________________
{
  "target_centroids" : 40,
  "pdb_id" : 3,
  "vector_type" : "FLOAT32",
  "type" : "IVF_FLAT",
  "vector_dimension" : 3,
  "distance" : "EUCLIDEAN",
  "indexed_col" : "V",
  "min_vectors_per_partition" : 10,
  "degree_of_parallelism" : 1,
  "accuracy" : 95,
  "num_centroids" : 24,
  "samples_per_partition" : 256
}
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15. Again create an explain plan, which now includes information about the newly created IVF
index.

EXPLAIN PLAN FOR
  SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v, :query_vector, EUCLIDEAN)
  FETCH APPROX FIRST 20 ROWS ONLY;

SELECT plan_table_output 
  FROM table(dbms_xplan.display('plan_table',null,'all'));

Example output:

PLAN_TABLE_OUTPUT
___________________________________________________________________________
___________________________________________________________________________
____________________
Plan hash value: 2965029064

---------------------------------------------------------------------------
---------------------------------------------------------------------------
-----------------
| Id  | Operation                          | 
Name                                                             | Rows  | 
Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
-----------------
|   0 | SELECT STATEMENT                   
|                                                                  |     5 
|  1260 |    29  (14)| 00:00:01 |       |       |
|   1 |  VIEW                              
|                                                                  |     5 
|  1260 |    29  (14)| 00:00:01 |       |       |
|   2 |   SORT ORDER BY                    
|                                                                  |     5 
| 21910 |    29  (14)| 00:00:01 |       |       |
|*  3 |    HASH JOIN                       
|                                                                  |     5 
| 21910 |    28  (11)| 00:00:01 |       |       |
|   4 |     VIEW                           | 
VW_IVPSR_11E7D7DE                                                |    20 
|   320 |    24   (9)| 00:00:01 |       |       |
|*  5 |      COUNT STOPKEY                 
|                                                                  |       
|       |            |          |       |       |
|   6 |       VIEW                         | 
VW_IVPSJ_578B79F1                                                |    25 
|   450 |    24   (9)| 00:00:01 |       |       |
|*  7 |        SORT ORDER BY STOPKEY       
|                                                                  |    25 
|   550 |    24   (9)| 00:00:01 |       |       |
|*  8 |         HASH JOIN                  
|                                                                  |    25 
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|   550 |    23   (5)| 00:00:01 |       |       |

PLAN_TABLE_OUTPUT
___________________________________________________________________________
___________________________________________________________________________
____________________
|   9 |          PART JOIN FILTER CREATE   
| :BF0000                                                          |     6 
|    18 |     4  (25)| 00:00:01 |       |       |
|  10 |           VIEW                     | 
VW_IVCR_B5B87E67                                                 |     6 
|    18 |     4  (25)| 00:00:01 |       |       |
|* 11 |            COUNT STOPKEY           
|                                                                  |       
|       |            |          |       |       |
|  12 |             VIEW                   | 
VW_IVCN_9A1D2119                                                 |    24 
|   312 |     4  (25)| 00:00:01 |       |       |
|* 13 |              SORT ORDER BY STOPKEY 
|                                                                  |    24 
|   216 |     4  (25)| 00:00:01 |       |       |
|  14 |               TABLE ACCESS FULL    | 
VECTOR$GENVEC_IVF_IDX$87355_87370_0$IVF_FLAT_CENTROIDS           |    24 
|   216 |     3   (0)| 00:00:01 |       |       |
|  15 |          PARTITION LIST JOIN-
FILTER|                                                                  
|   100 |  1900 |     3   (0)| 00:00:01 |:BF0000|:BF0000|
|  16 |           TABLE ACCESS FULL        | 
VECTOR$GENVEC_IVF_IDX$87355_87370_0$IVF_FLAT_CENTROID_PARTITIONS |   100 
|  1900 |     3   (0)| 00:00:01 |:BF0000|:BF0000|
|  17 |     TABLE ACCESS FULL              | 
GENVEC                                                           |   100 
|   426K|     3   (0)| 00:00:01 |       |       |
---------------------------------------------------------------------------
---------------------------------------------------------------------------
-----------------

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------

PLAN_TABLE_OUTPUT
___________________________________________________________
   1 - SEL$94C0F189 / "from$_subquery$_002"@"SEL$2"
   2 - SEL$94C0F189
   4 - SEL$E731354C / "VW_IVPSR_11E7D7DE"@"SEL$1"
   5 - SEL$E731354C
   6 - SEL$0C00A749 / "VW_IVPSJ_578B79F1"@"SEL$E731354C"
   7 - SEL$0C00A749
  10 - SEL$700CE8F1 / "VW_IVCR_B5B87E67"@"SEL$0C00A749"
  11 - SEL$700CE8F1
  12 - SEL$E5326247 / "VW_IVCN_9A1D2119"@"SEL$700CE8F1"
  13 - SEL$E5326247
  14 - SEL$E5326247 / "VTIX_CENTRD"@"SEL$E5326247"
  16 - SEL$0C00A749 / "VTIX_CNPART"@"SEL$0C00A749"
  17 - SEL$94C0F189 / "GENVEC"@"SEL$1"
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PLAN_TABLE_OUTPUT
___________________________________________________________________________
___
Predicate Information (identified by operation id):
---------------------------------------------------

   3 - access("GENVEC".ROWID="VW_IVPSR_11E7D7DE"."BASE_TABLE_ROWID")
   5 - filter(ROWNUM<=20)
   7 - filter(ROWNUM<=20)
   8 - access("VW_IVCR_B5B87E67"."CENTROID_ID"="VTIX_CNPART"."CENTROID_ID")
  11 - filter(ROWNUM<=6)
  13 - filter(ROWNUM<=6)

Column Projection Information (identified by operation id):
-----------------------------------------------------------

   1 - "from$_subquery$_002"."NAME"[VARCHAR2,500]

PLAN_TABLE_OUTPUT
___________________________________________________________________________
___________________________________________________________________________
____________
   2 - (#keys=1) "VEC_DIST"[BINARY_DOUBLE,8], "GENVEC"."NAME"[VARCHAR2,500]
   3 - (#keys=1) "GENVEC"."NAME"[VARCHAR2,500], 
"VEC_DIST"[BINARY_DOUBLE,8], "GENVEC"."NAME"[VARCHAR2,500]
   4 - "BASE_TABLE_ROWID"[ROWID,10], "VEC_DIST"[BINARY_DOUBLE,8]
   5 - "VW_IVPSJ_578B79F1"."BASE_TABLE_ROWID"[ROWID,10], 
"VW_IVPSJ_578B79F1"."VEC_DIST"[BINARY_DOUBLE,8]
   6 - "VW_IVPSJ_578B79F1"."BASE_TABLE_ROWID"[ROWID,10], 
"VW_IVPSJ_578B79F1"."VEC_DIST"[BINARY_DOUBLE,8]
   7 - (#keys=1) VECTOR_DISTANCE("VTIX_CNPART"."DATA_VECTOR" /*+ 
LOB_BY_VALUE */ , VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ),
       EUCLIDEAN)[BINARY_DOUBLE,8], 
"VTIX_CNPART"."BASE_TABLE_ROWID"[ROWID,10]
   8 - (#keys=1) "VTIX_CNPART"."BASE_TABLE_ROWID"[ROWID,10], 
VECTOR_DISTANCE("VTIX_CNPART"."DATA_VECTOR" /*+ LOB_BY_VALUE */ , 
VECTOR(:QUERY_VECTOR, *, * /*+
       USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)[BINARY_DOUBLE,8]
   9 - "VW_IVCR_B5B87E67"."CENTROID_ID"[NUMBER,22], 
"VW_IVCR_B5B87E67"."CENTROID_ID"[NUMBER,22]
  10 - "CENTROID_ID"[NUMBER,22]
  11 - "VW_IVCN_9A1D2119"."CENTROID_ID"[NUMBER,22]
  12 - "VW_IVCN_9A1D2119"."CENTROID_ID"[NUMBER,22]
  13 - (#keys=1) 
VECTOR_DISTANCE("VECTOR$GENVEC_IVF_IDX$87355_87370_0$IVF_FLAT_CENTROIDS"."C
ENTROID_VECTOR" /*+ LOB_BY_VALUE */ , VECTOR(:QUERY_VECTOR, *, *

PLAN_TABLE_OUTPUT
___________________________________________________________________________
___________________________________________________________________________
___________
       /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)[BINARY_DOUBLE,8], 
"VTIX_CENTRD"."CENTROID_ID"[NUMBER,22]
  14 - "VTIX_CENTRD"."CENTROID_ID"[NUMBER,22], 
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VECTOR_DISTANCE("VECTOR$GENVEC_IVF_IDX$87355_87370_0$IVF_FLAT_CENTROIDS"."C
ENTROID_VECTOR" /*+ LOB_BY_VALUE */
       , VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)
[BINARY_DOUBLE,8]
  15 - "VTIX_CNPART"."BASE_TABLE_ROWID"[ROWID,10], 
"VTIX_CNPART"."CENTROID_ID"[NUMBER,22], 
VECTOR_DISTANCE("VTIX_CNPART"."DATA_VECTOR" /*+ LOB_BY_VALUE */ ,
       VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)
[BINARY_DOUBLE,8]
  16 - "VTIX_CNPART"."BASE_TABLE_ROWID"[ROWID,10], 
"VTIX_CNPART"."CENTROID_ID"[NUMBER,22], 
VECTOR_DISTANCE("VTIX_CNPART"."DATA_VECTOR" /*+ LOB_BY_VALUE */ ,
       VECTOR(:QUERY_VECTOR, *, * /*+  USEBLOBPCW_QVCGMD */ ), EUCLIDEAN)
[BINARY_DOUBLE,8]
  17 - "GENVEC".ROWID[ROWID,10], "GENVEC"."NAME"[VARCHAR2,500]

Note
-----
   - dynamic statistics used: dynamic sampling (level=2)
   - this is an adaptive plan

83 rows selected.

16. Finally, run the similarity search once again.

SELECT name
  FROM genvec
  ORDER BY VECTOR_DISTANCE(v, :query_vector, EUCLIDEAN)
  FETCH APPROX FIRST 20 ROWS ONLY;

Example output:

NAME
________
C5
C5-15
C5-13
C5-3
C5-11
C5-1
C5-8
C5-6
C5-7
C5-12
C5-9
C5-4
C5-2
C5-5

NAME
________
C5-14
C5-10
C4-5
C4-12
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C4-4
C4-13

20 rows selected.

SQL Quick Start Using a BINARY Vector Generator
A set of procedures generate BINARY vectors, providing a simple way to get started with Oracle
AI Vector Search without a vector embedding model.

The included procedures allow you to randomly generate binary vectors with a specified
number of dimensions and clusters. The output of the generation process is the population of a
table called genbvec that you can then use, for example, to experiment with similarity searches.

The following instructions assume you already have access to a database account with
sufficient privileges (minimally the DB_DEVELOPER_ROLE role).

Note:

Do not use the BINARY vector generator on production databases. This tutorial is
made available for testing and demo purposes.

Note:

If you already have access to a third-party BINARY vector embedding model, you can
perform a real text-to-BINARY-embedding transformation by calling third-party REST
APIs using the Vector Utility PL/SQL package DBMS_VECTOR. For more information,
refer to the example in Convert Text String to BINARY Embedding Outside Oracle
Database.

1. Create the genbvec table.

DROP TABLE genbvec PURGE;

CREATE TABLE genbvec (
  id NUMBER,            -- id of the generated vector
  v VECTOR(*, BINARY),  -- generated vector
  name VARCHAR2(500),   -- name for the generated vector: C1 to Cn are 
centroids, Cx_y is vector number y in cluster number x
  bv VARCHAR2(40),      -- bit version of the generated vector
  ly NUMBER             -- random number you can use to filter out rows in 
addiion to similarity search on vectors
);

2. Create the procedures used to generate BINARY vectors:

CREATE OR REPLACE PROCEDURE generate_random_binary_vector(
dimensions IN NUMBER,
result_int OUT VECTOR,
result_binary OUT VARCHAR2
) IS
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    binary_vector VARCHAR2(40);
    int8_value NUMBER;
    number_of_bits NUMBER;
    char_vector VARCHAR2(40);
BEGIN
  -- Validate dimension is a multiple of 8
  IF MOD(dimensions, 8) != 0 THEN
    RAISE_APPLICATION_ERROR(-20001, 'Number of dimensions must be a 
multiple of 8');
  END IF;

  -- Generate the random binary vector
  binary_vector := '';
  FOR i IN 1 .. dimensions LOOP
    IF DBMS_RANDOM.VALUE(0, 1) < 0.5 THEN
      binary_vector := binary_vector || '0';
    ELSE
      binary_vector := binary_vector || '1';
    END IF;
  END LOOP;

  -- Convert 8-bit packets to their int8 values and build the result string
  number_of_bits := dimensions/8;
  char_vector := '[';
  FOR i IN 0 .. number_of_bits - 1 LOOP
    int8_value := 0;
    FOR j IN 0 .. 7 LOOP
      int8_value := int8_value + TO_NUMBER(SUBSTR(binary_vector, i*8+j+1, 
1)) * POWER(2, j);
    END LOOP;
    char_vector := char_vector || int8_value;
    IF i < number_of_bits - 1 THEN
      char_vector := char_vector || ',';
    END IF;
  END LOOP;
  char_vector := char_vector || ']';
  
  -- Return the generated vector value
  result_int := to_vector(char_vector, dimensions, BINARY);
  result_binary := binary_vector;
END generate_random_binary_vector;
/

CREATE OR REPLACE PROCEDURE generate_binary_cluster(
  centroid IN VARCHAR2,            -- a string of 1 and 0
  spread IN NUMBER,                -- Maximum Hamming distance between 
centroid and other vectors in the same cluster
  cluster_size IN NUMBER,          -- Number of vectors to generate in 
addition to the centroid
  result_binary OUT SYS_REFCURSOR,
  result_int8 OUT SYS_REFCURSOR
) IS
    dimension NUMBER;
    max_spread NUMBER;
    vector VARCHAR2(40);
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    char_vector VARCHAR2(40);
    flip_positions DBMS_SQL.VARCHAR2_TABLE;
    random_position NUMBER;
    tresult_binary DBMS_SQL.VARCHAR2_TABLE;
    tresult_int8 DBMS_SQL.VARCHAR2_TABLE;
    binary_vector VARCHAR2(40);
    cluster_index NUMBER := 1;
    number_of_bits NUMBER;
    int8_value NUMBER;
BEGIN
  -- Determine the dimension of the centroid vector
  dimension := LENGTH(centroid);

  -- Ensure dimension is a multiple of 8
  IF MOD(dimension, 8) != 0 THEN
    RAISE_APPLICATION_ERROR(-20001, 'Number of dimensions must be a 
multiple of 8');
  END IF;

  -- Generate the cluster of binary vectors
  WHILE cluster_index <= cluster_size LOOP
    binary_vector := centroid;

    -- Randomly flip bits in the centroid vector with a max of spread bits
    max_spread := TRUNC(DBMS_RANDOM.VALUE(1, spread+1));
    flip_positions.DELETE;
    FOR i IN 1 .. max_spread LOOP
      random_position := TRUNC(DBMS_RANDOM.VALUE(1, dimension+1));
      -- Ensure no duplicates
      WHILE flip_positions.EXISTS(random_position) LOOP
        random_position := TRUNC(DBMS_RANDOM.VALUE(1, dimension+1));
      END LOOP;
      flip_positions(random_position) := '1';
    END LOOP;

    -- Apply flips to binary vector
    FOR i IN 1 .. dimension LOOP
      IF flip_positions.EXISTS(i) THEN
        IF SUBSTR(binary_vector, i, 1) = '0' THEN
          binary_vector := SUBSTR(binary_vector, 1, i-1) || '1' || 
SUBSTR(binary_vector, i+1);
        ELSE
          binary_vector := SUBSTR(binary_vector, 1, i-1) || '0' || 
SUBSTR(binary_vector, i+1);
        END IF;
      END IF;
    END LOOP;

    -- Convert binary vector to int8 values
    number_of_bits := dimension/8;
    char_vector := '[';
    FOR i IN 0 .. number_of_bits-1 LOOP
      int8_value := 0;
      FOR j IN 0 .. 7 LOOP
        int8_value := int8_value + TO_NUMBER(SUBSTR(binary_vector, 
i*8+j+1, 1)) * POWER(2, j);
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      END LOOP;
      char_vector := char_vector || int8_value;
      IF i < number_of_bits-1 THEN
        char_vector := char_vector || ',';
      END IF;
    END LOOP;
    char_vector := char_vector || ']';

    -- Add generated vectors to result tables
    tresult_binary(cluster_index) := binary_vector;
    tresult_int8(cluster_index) := char_vector;

    cluster_index := cluster_index + 1;
    END LOOP;

    -- Open cursor for binary result set
    OPEN result_binary FOR
      SELECT COLUMN_VALUE AS binary_vector
      FROM TABLE(tresult_binary);
    
    -- Open cursor for int8 result set
    OPEN result_int8 FOR
      SELECT COLUMN_VALUE AS int8_vector
      FROM TABLE(tresult_int8);

END generate_binary_cluster;
/

CREATE OR REPLACE PROCEDURE generate_binary_vectors(
  num_vectors NUMBER,   -- If numbers of vector is not a multiple of 
num_clusters, remaining vectors are not generated
  num_clusters NUMBER,  -- Must be greater than 0
  dimensions NUMBER,    -- Must be a multiple of 8
  cluster_spread NUMBER -- Maximum Hamming distance between centroid and 
other vectors in the same cluster: max number of bits flipped
) IS
    vectors_per_cluster NUMBER;
    remaining_vectors NUMBER;
    i NUMBER := 1;
    j NUMBER := 1;
    idx NUMBER := 1;
    max_id NUMBER;
    ri VECTOR(*, BINARY);
    rb VARCHAR2(40);
    result_binary SYS_REFCURSOR;
    result_int8 SYS_REFCURSOR;
    vb VARCHAR2(40);
    vi VARCHAR2(40);    
BEGIN

  IF (num_vectors) <=0 OR (num_clusters < 1) OR (num_vectors < 
num_clusters) 
        OR (dimensions <= 0) OR (dimensions > 504) OR (cluster_spread <= 
0) THEN
    RAISE_APPLICATION_ERROR(-20001, 'Issues with arguments provided');
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  END IF;

  SELECT MAX(id) INTO max_id FROM genbvec;
  IF max_id IS NULL THEN max_id := 0;
  END IF;

  -- Calculate vectors per cluster
  vectors_per_cluster := TRUNC(num_vectors / num_clusters);
  remaining_vectors := num_vectors MOD num_clusters; -- remaining vectors 
are not generated

  -- Generate cluster centroids
  FOR i IN 1..num_clusters LOOP
    generate_random_binary_vector(dimensions, ri, rb);
    INSERT INTO genbvec VALUES (max_id + idx, ri, 'C'||i, rb, 
DBMS_RANDOM.VALUE(3,600000000));
    idx := idx + 1;

    -- Generate vectors for each cluster
    IF vectors_per_cluster > 1 THEN
      generate_binary_cluster(rb, cluster_spread, vectors_per_cluster, 
result_binary, result_int8);

      -- Output the binary result
      j:= 1;
      LOOP
        FETCH result_binary INTO vb;
        FETCH result_int8 INTO vi;
        EXIT WHEN result_binary%NOTFOUND;
        ri := TO_VECTOR(vi, dimensions, BINARY);
        INSERT INTO genbvec VALUES (max_id + idx, ri, 'C'||i||'-'||j, vb, 
DBMS_RANDOM.VALUE(3,600000000));
        j := j+1;
        idx := idx + 1;
      END LOOP;
      CLOSE result_binary; 
      CLOSE result_int8;
    END IF;
  END LOOP;
  COMMIT;     

END generate_binary_vectors;
/

3. After you have your vector generator procedures set up, you can run the commands in this
step to get started experimenting with BINARY vectors in the database.

This example generates two clusters, each having twenty-one 32-dimension vectors
(including the centroid) with a maximum spread of 3 from the centroid:

a. Start out by generating some BINARY vectors using the generate_binary_vectors
procedure. The results of the generation are inserted into the table, genbvec.

BEGIN
  generate_binary_vectors(
    num_vectors  =>   40,   -- If numbers of vector is not a multiple 
of num_clusters, remaining vectors are not generated
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    num_clusters =>    2,   -- Must be grather than 0
    dimensions   =>   32,   -- Must be a multiple of 8 and less than 504
    cluster_spread =>  3    -- Maximum Hamming distance between 
centroid and other vectors in the same cluster: max number of bits 
flipped
  );
END;
/

b. Run a SELECT statement to view the generated BINARY vectors.

SET SERVEROUTPUT ON;

SELECT id, v, name, VECTOR_DIMENSION_COUNT(v) DIMS, 
VECTOR_DIMENSION_FORMAT(v) FORMAT, bv, ly FROM genbvec;

Example output:

     ID  V                    NAME       DIMS      FORMAT      
BV                                               LY
-------  -------------------  ---------  --------  ----------  
-----------------------------------  --------------
      1  [24,153,161,63]      C1         32        BINARY      
00011000100110011000010111111100     99789021.1
      2  [24,153,165,63]      C1-1       32        BINARY      
00011000100110011010010111111100     60221003.5
      3  [26,152,165,63]      C1-2       32        BINARY      
01011000000110011010010111111100     387124796
      4  [24,201,161,62]      C1-3       32        BINARY      
00011000100100111000010101111100     291263868
      5  [24,187,161,63]      C1-4       32        BINARY      
00011000110111011000010111111100     583827824
      6  [24,153,161,61]      C1-5       32        BINARY      
00011000100110011000010110111100     144826451
      7  [24,153,171,55]      C1-6       32        BINARY      
00011000100110011101010111101100     113684378
      8  [88,153,161,61]      C1-7       32        BINARY      
00011010100110011000010110111100     312081799
      9  [152,217,161,47]     C1-8       32        BINARY      
00011001100110111000010111110100     173971628
     10  [24,153,163,59]      C1-9       32        BINARY      
00011000100110011100010111011100     500775192
     11  [24,153,160,61]      C1-10      32        BINARY      
00011000100110010000010110111100     137309652
     12  [25,185,161,47]      C1-11      32        BINARY      
10011000100111011000010111110100     483392712
     13  [89,153,161,63]      C1-12      32        BINARY      
10011010100110011000010111111100     458730494
     14  [24,153,229,31]      C1-13      32        BINARY      
00011000100110011010011111111000     325738354

     ID  V                    NAME       DIMS      FORMAT      
BV                                               LY
-------  -------------------  ---------  --------  ----------  
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-----------------------------------  --------------
     15  [24,152,161,63]      C1-14      32        BINARY      
00011000000110011000010111111100     260267242
     16  [24,153,165,63]      C1-15      32        BINARY      
00011000100110011010010111111100     153663322
     17  [24,137,169,63]      C1-16      32        BINARY      
00011000100100011001010111111100     411918780
     18  [24,185,161,63]      C1-17      32        BINARY      
00011000100111011000010111111100     53885587.1
     19  [152,137,161,63]     C1-18      32        BINARY      
00011001100100011000010111111100     321305137
     20  [25,153,161,63]      C1-19      32        BINARY      
10011000100110011000010111111100     180742593
     21  [16,153,161,63]      C1-20      32        BINARY      
00001000100110011000010111111100     511768659
     22  [183,107,24,190]     C2         32        BINARY      
11101101110101100001100001111101     529205377
     23  [181,251,24,190]     C2-1       32        BINARY      
10101101110111110001100001111101     391560729
     24  [191,107,25,186]     C2-2       32        BINARY      
11111101110101101001100001011101     191852938
     25  [182,106,24,190]     C2-3       32        BINARY      
01101101010101100001100001111101     164088550
     26  [183,107,56,187]     C2-4       32        BINARY      
11101101110101100001110011011101     20400437.6
     27  [183,106,16,190]     C2-5       32        BINARY      
11101101010101100000100001111101     363725396
     28  [183,107,40,190]     C2-6       32        BINARY      
11101101110101100001010001111101     144549103

     ID  V                    NAME       DIMS      FORMAT      
BV                                               LY
-------  -------------------  ---------  --------  ----------  
-----------------------------------  --------------
     29  [183,107,26,190]     C2-7       32        BINARY      
11101101110101100101100001111101     318036129
     30  [183,123,24,188]     C2-8       32        BINARY      
11101101110111100001100000111101     309460286
     31  [179,35,24,190]      C2-9       32        BINARY      
11001101110001000001100001111101     25042254.7
     32  [182,251,24,190]     C2-10      32        BINARY      
01101101110111110001100001111101     355499793
     33  [183,251,24,190]     C2-11      32        BINARY      
11101101110111110001100001111101     483002129
     34  [183,107,24,254]     C2-12      32        BINARY      
11101101110101100001100001111111     497697267
     35  [183,42,24,158]      C2-13      32        BINARY      
11101101010101000001100001111001     64446273.5
     36  [151,107,28,186]     C2-14      32        BINARY      
11101001110101100011100001011101     248483969
     37  [167,43,16,190]      C2-15      32        BINARY      
11100101110101000000100001111101     513880134
     38  [183,106,24,190]     C2-16      32        BINARY      
11101101010101100001100001111101     558247180
     39  [183,123,24,190]     C2-17      32        BINARY      
11101101110111100001100001111101     287706546
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     40  [151,107,24,190]     C2-18      32        BINARY      
11101001110101100001100001111101     309138884
     41  [167,107,28,186]     C2-19      32        BINARY      
11100101110101100011100001011101     433932877
     42  [63,106,24,190]      C2-20      32        BINARY      
11111100010101100001100001111101     84539416.7

c. Perform a similarity search on the BINARY vectors.

SELECT name, v, bv, VECTOR_DISTANCE(v, 
  (SELECT v FROM genbvec WHERE name='C1'), HAMMING) DISTANCE
FROM genbvec
ORDER BY VECTOR_DISTANCE(v, (SELECT v FROM genbvec WHERE name='C1'), 
HAMMING);

Example output:

   NAME  V                  BV                                 DISTANCE
-------  -----------------  ---------------------------------  
----------
     C1  [24,153,161,63]    00011000100110011000010111111100   0
   C1-1  [24,153,165,63]    00011000100110011010010111111100   1.0
  C1-20  [16,153,161,63]    00001000100110011000010111111100   1.0
  C1-19  [25,153,161,63]    10011000100110011000010111111100   1.0
  C1-17  [24,185,161,63]    00011000100111011000010111111100   1.0
  C1-15  [24,153,165,63]    00011000100110011010010111111100   1.0
  C1-14  [24,152,161,63]    00011000000110011000010111111100   1.0
   C1-5  [24,153,161,61]    00011000100110011000010110111100   1.0
   C1-4  [24,187,161,63]    00011000110111011000010111111100   2.0
  C1-18  [152,137,161,63]   00011001100100011000010111111100   2.0
  C1-16  [24,137,169,63]    00011000100100011001010111111100   2.0
  C1-12  [89,153,161,63]    10011010100110011000010111111100   2.0
  C1-10  [24,153,160,61]    00011000100110010000010110111100   2.0
   C1-9  [24,153,163,59]    00011000100110011100010111011100   2.0

   NAME  V                  BV                                 DISTANCE
-------  -----------------  ---------------------------------  
----------
   C1-7  [88,153,161,61]    00011010100110011000010110111100   2.0
   C1-2  [26,152,165,63]    01011000000110011010010111111100   3.0
   C1-3  [24,201,161,62]    00011000100100111000010101111100   3.0
   C1-6  [24,153,171,55]    00011000100110011101010111101100   3.0
   C1-8  [152,217,161,47]   00011001100110111000010111110100   3.0
  C1-11  [25,185,161,47]    10011000100111011000010111110100   3.0
  C1-13  [24,153,229,31]    00011000100110011010011111111000   3.0
   C2-1  [181,251,24,190]   10101101110111110001100001111101   15.0
  C2-10  [182,251,24,190]   01101101110111110001100001111101   15.0
   C2-6  [183,107,40,190]   11101101110101100001010001111101   16.0
  C2-11  [183,251,24,190]   11101101110111110001100001111101   16.0
   C2-2  [191,107,25,186]   11111101110101101001100001011101   17.0
  C2-20  [63,106,24,190]    11111100010101100001100001111101   17.0
  C2-18  [151,107,24,190]   11101001110101100001100001111101   17.0

   NAME  V                  BV                                 DISTANCE
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-------  -----------------  ---------------------------------  
----------
  C2-17  [183,123,24,190]   11101101110111100001100001111101   17.0
  C2-15  [167,43,16,190]    11100101110101000000100001111101   17.0
   C2-9  [179,35,24,190]    11001101110001000001100001111101   17.0
   C2-4  [183,107,56,187]   11101101110101100001110011011101   17.0
     C2  [183,107,24,190]   11101101110101100001100001111101   18.0
   C2-8  [183,123,24,188]   11101101110111100001100000111101   18.0
   C2-3  [182,106,24,190]   01101101010101100001100001111101   18.0
   C2-5  [183,106,16,190]   11101101010101100000100001111101   18.0
   C2-7  [183,107,26,190]   11101101110101100101100001111101   19.0
  C2-12  [183,107,24,254]   11101101110101100001100001111111   19.0
  C2-13  [183,42,24,158]    11101101010101000001100001111001   19.0
  C2-14  [151,107,28,186]   11101001110101100011100001011101   19.0
  C2-16  [183,106,24,190]   11101101010101100001100001111101   19.0
  C2-19  [167,107,28,186]   11100101110101100011100001011101   21.0

42 rows selected.

d. Run another similarity search, this time limiting the results to the first 21 rows. In this
example, this means the results include BINARY vectors only from cluster 1.

SELECT name, v, bv, VECTOR_DISTANCE(v, 
    (SELECT v FROM genbvec WHERE name='C1'), HAMMING) DISTANCE
FROM genbvec
ORDER BY VECTOR_DISTANCE(v, (SELECT v FROM genbvec WHERE name='C1'), 
HAMMING)
FETCH EXACT FIRST 21 ROWS ONLY;

Example output:

   NAME  V                   BV                                 DISTANCE
-------  ------------------  ---------------------------------  
----------
     C1  [24,153,161,63]     00011000100110011000010111111100   0
   C1-1  [24,153,165,63]     00011000100110011010010111111100   1.0
  C1-20  [16,153,161,63]     00001000100110011000010111111100   1.0
  C1-19  [25,153,161,63]     10011000100110011000010111111100   1.0
  C1-17  [24,185,161,63]     00011000100111011000010111111100   1.0
  C1-15  [24,153,165,63]     00011000100110011010010111111100   1.0
  C1-14  [24,152,161,63]     00011000000110011000010111111100   1.0
   C1-5  [24,153,161,61]     00011000100110011000010110111100   1.0
   C1-4  [24,187,161,63]     00011000110111011000010111111100   2.0
  C1-18  [152,137,161,63]    00011001100100011000010111111100   2.0
  C1-16  [24,137,169,63]     00011000100100011001010111111100   2.0
  C1-12  [89,153,161,63]     10011010100110011000010111111100   2.0
  C1-10  [24,153,160,61]     00011000100110010000010110111100   2.0
   C1-9  [24,153,163,59]     00011000100110011100010111011100   2.0

   NAME  V                   BV                                 DISTANCE
-------  ------------------  ---------------------------------  
----------
   C1-7  [88,153,161,61]     00011010100110011000010110111100   2.0
   C1-2  [26,152,165,63]     01011000000110011010010111111100   3.0
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   C1-3  [24,201,161,62]     00011000100100111000010101111100   3.0
   C1-6  [24,153,171,55]     00011000100110011101010111101100   3.0
   C1-8  [152,217,161,47]    00011001100110111000010111110100   3.0
  C1-11  [25,185,161,47]     10011000100111011000010111110100   3.0
  C1-13  [24,153,229,31]     00011000100110011010011111111000   3.0

21 rows selected.

e. In this iteration, the similarity search omits the HAMMING distance metric. However,
because HAMMING is the default metric used with BINARY vectors, the results are the
same as the previous query.

SELECT name, v, bv, VECTOR_DISTANCE(v, 
    (SELECT v FROM genbvec WHERE name='C1')) DISTANCE
FROM genbvec
ORDER BY VECTOR_DISTANCE(v, (SELECT v FROM genbvec WHERE name='C1'))
FETCH EXACT FIRST 21 ROWS ONLY;

Example output:

   NAME  V                   BV                                 DISTANCE
-------  ------------------  ---------------------------------  
----------
     C1  [24,153,161,63]     00011000100110011000010111111100   0
   C1-1  [24,153,165,63]     00011000100110011010010111111100   1.0
  C1-20  [16,153,161,63]     00001000100110011000010111111100   1.0
  C1-19  [25,153,161,63]     10011000100110011000010111111100   1.0
  C1-17  [24,185,161,63]     00011000100111011000010111111100   1.0
  C1-15  [24,153,165,63]     00011000100110011010010111111100   1.0
  C1-14  [24,152,161,63]     00011000000110011000010111111100   1.0
   C1-5  [24,153,161,61]     00011000100110011000010110111100   1.0
   C1-4  [24,187,161,63]     00011000110111011000010111111100   2.0
  C1-18  [152,137,161,63]    00011001100100011000010111111100   2.0
  C1-16  [24,137,169,63]     00011000100100011001010111111100   2.0
  C1-12  [89,153,161,63]     10011010100110011000010111111100   2.0
  C1-10  [24,153,160,61]     00011000100110010000010110111100   2.0
   C1-9  [24,153,163,59]     00011000100110011100010111011100   2.0

   NAME  V                   BV                                 DISTANCE
-------  ------------------  ---------------------------------  
----------
   C1-7  [88,153,161,61]     00011010100110011000010110111100   2.0
   C1-2  [26,152,165,63]     01011000000110011010010111111100   3.0
   C1-3  [24,201,161,62]     00011000100100111000010101111100   3.0
   C1-6  [24,153,171,55]     00011000100110011101010111101100   3.0
   C1-8  [152,217,161,47]    00011001100110111000010111110100   3.0
  C1-11  [25,185,161,47]     10011000100111011000010111110100   3.0
  C1-13  [24,153,229,31]     00011000100110011010011111111000   3.0

21 rows selected.
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Your Vector Documentation Map to GenAI Prompts
Follow the included steps to increase your chance of getting better and more consistent
answers about this document from your preferred Generative AI Chatbot with internet search
capabilities.

1. Click on a topic of interest in the AI Vector Search Topic Map section of this page.

2. Copy and paste the corresponding prompt in your preferred Chatbot UI.

3. Enter your question at the end of the prompt.

4. Run your prompt.

WARNING:

Your use of Generative AI Chatbots is solely at your own risk, and you are solely
responsible for complying with any terms and conditions related to the use of any
such chatbots. Oracle provides these information map prompts only for convenience
and educational purposes. Notwithstanding any other terms and conditions related to
the use of Generative AI Chatbots, your use of these prompts constitutes your
acceptance of that risk and expresses exclusion of Oracle's responsibility or liability
for any damages resulting from such use.

AI Vector Search Topic Map

• AI Vector Search Overview

• Get Started

• Generate Vector Embeddings

– Understand Vector Embeddings Generation

– Convert Pretrained Models to ONNX Format

– Import ONNX Models into Oracle Database

– Access Third-Party Models for Vector Generation

– Generate Embedding Functions and Examples

– Perform Chunking with Embedding Examples

– Configure Chunking Parameters and Chunking Functions

– Store Vector Embeddings in Relational Tables

• Vector Indexes

– Size the Vector Pool

– Hierarchical Navigable Small World Indexes

– Inverted File Flat Vector Indexes

– Guidelines for Vector Indexes

– Create and Alter Hybrid Vector Index

– Search Hybrid Vector Index

• Vector Operations
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– Distance Metrics

– Vector Distance Functions and Operators

– Vector Constructors, Converters, Descriptors, Arithmetic Operators and Aggregate
Functions

– Query Data with Similarity Searches

– Work with LLM-Powered APIs

– Retrieval Augmented Generation

• Vector Diagnostics

– Oracle AI Vector Search Views

* Text Processing Views

* Views Related to Vector Indexes and Hybrid Vector Indexes

– Oracle AI Vector Search Statistics and Initialization Parameters

– Vector Search PL/SQL Packages

AI Vector Search Topic Map Prompts

AI Vector Search Overview

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/overview-
ai-vector-search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/why-use-
vector-search-instead-other-vector-databases.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-ai-
vector-search-workflow.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
glossary.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supported-
clients-and-languages.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Get Started

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sql-quick-
start-using-vector-embedding-model-uploaded-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sql-quick-
start-using-float32-vector-generator.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sql-quick-
start-using-binary-vector-generator.html
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Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Understand Vector Embeddings Generation

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-stages-data-transformations.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sql-
functions-generate-embeddings.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/chainable-
utility-functions-and-common-use-cases.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vector-
helper-procedures.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supplied-
vector-utility-pl-sql-packages.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supported-
third-party-provider-operations-and-endpoints.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/terms-
using-vector-utility-pl-sql-packages.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/validate-
json-input-parameters.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Convert Pretrained Models to ONNX Format

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/onnx-
pipeline-models-text-embedding.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/onnx-
pipeline-models-image-embedding.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/onnx-
pipeline-models-multi-modal-embedding.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/onnx-
pipeline-models-text-classification.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/onnx-
pipeline-models-reranking.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
pretrained-models-onnx-model-end-end-instructions.html
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https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/python-
classes-convert-pretrained-models-onnx-models.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Import ONNX Models into Oracle Database

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/import-
onnx-models-oracle-database-end-end-example.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/alternate-
method-import-onnx-models.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Access Third-Party Models for Vector Generation

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/access-
third-party-models-vector-generation-leveraging-third-party-rest-apis.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dbms_vector-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dbms_vector_chain-vecse.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Chapter 3
Your Vector Documentation Map to GenAI Prompts

3-51



Generate Embedding Functions and Examples

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_embedding.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_chunks.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
text-string-embedding-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
text-string-binary-embedding-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
text-string-embedding-using-public-third-party-apis.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
text-string-embedding-locally-ollama.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
image-embedding-using-public-third-party-apis.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vectorize-
relational-tables-using-oml-feature-extraction-algorithms.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Perform Chunking With Embedding Examples

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
text-chunks-custom-chunking-specifications.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
file-text-chunks-embeddings-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/convert-
file-embeddings-oracle-database.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/generate-
and-use-embeddings-end-end-search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_chunks.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>
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Configure Chunking Parameters and Chunking Functions

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/explore-
chunking-techniques-and-examples.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/create-
and-use-custom-vocabulary.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/create-
and-use-custom-language-data.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_chunks.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Store Vector Embeddings in Relational Tables

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/create-
tables-using-vector-data-type.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vectors-
external-tables.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/querying-
inline-external-table.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
performing-semantic-similarity-search-using-external-table.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vectors-
distributed-database-tables.html#GUID-F75FB9CA-E7D1-46BC-847A-7324EF21D829
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/binary-
vectors.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sparse-
vectors.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/insert-
vectors-database-table-using-insert-statement.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/load-
character-vector-data-using-sqlloader-example.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/load-
binary-vector-data-using-sqlloader-example.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/unload-
and-load-vectors-using-oracle-data-pump.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.
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Question:
<enter your question here>

Size the Vector Pool

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/size-
vector-pool.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Hierarchical Navigable Small World Indexes

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-hierarchical-navigable-small-world-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
hierarchical-navigable-small-world-index-syntax-and-parameters.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-transaction-support-tables-hnsw-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-hnsw-index-population-mechanisms-oracle-rac-and-single-
instance.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Inverted File Flat Vector Indexes

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-inverted-file-flat-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/inverted-
file-flat-index-syntax-and-parameters.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/inverted-
file-flat-vector-indexes-partitioning-schemes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/included-
columns.html#GUID-641E6D17-6B59-4860-A5BD-DF3D33793D43
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Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Guidelines for Vector Indexes

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
guidelines-using-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/index-
accuracy-report.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vector-
index-status-checkpoint-and-advisor-procedures.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Create and Alter Hybrid Vector Index

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/create-
vector-indexes-and-hybrid-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-hybrid-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/create-
hybrid-vector-index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/alter-
index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
guidelines-and-restrictions-hybrid-vector-indexes.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>
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Search Hybrid Vector Index

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-hybrid-search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/query-
hybrid-vector-indexes-end-end-example.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
searchpipeline.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
get_sql.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Distance Metrics

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/euclidean-
and-squared-euclidean-distances.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/cosine-
similarity.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/dot-
product-similarity.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/manhattan-
distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/hamming-
distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/jaccard-
similarity.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/custom-
distance-function.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>
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Vector Distance Functions and Operators

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
l1_distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
l2_distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
cosine_distance.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
inner_product.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
hamming_distance-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
jaccard_distance-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/custom-
distance-function.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Vector Constructors, Converters, Descriptors, Arithmetic Operators and Aggregate
Functions

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/to_vector-
vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vector-
vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
from_vector-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_serialize-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_norm-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_dimension_count-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_dims-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vector_dimension_format-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
arithmetic-operators.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
avg_vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
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sum_vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/json-
compatibility-vector-data-type.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Query Data with Similarity Searches

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/perform-
exact-similarity-search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
understand-approximate-similarity-search-using-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/optimizer-
plans-hnsw-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/optimizer-
plans-ivf-vector-indexes.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
approximate-search-using-hnsw.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
approximate-search-using-ivf.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vector-
index-hints.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/perform-
multi-vector-similarity-search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
terminable-iteration-ivf.html#VECSE-GUID-26BA0FE6-59A7-48B9-A39C-FFF49E5349A1

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Work with LLM-Powered APIs

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/generate-
summary-using-public-third-party-apis.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/generate-
summary-using-ollama.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/generate-
text-using-public-third-party-apis.html
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https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/generate-
text-locally-ollama.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/describe-
images-using-public-third-party-apis.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/describe-
images-using-ollama.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supported-
third-party-provider-operations-and-endpoints.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Retrieval Augmented Generation

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/retrieval-
augmented-generation1.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/sql-rag-
example.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-ai-
vector-search-integration-langchain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-ai-
vector-search-integration-llamaindex.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/use-
reranking-better-rag-results.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supported-
third-party-provider-operations-and-endpoints.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Text Processing Views

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
all_vector_abbrev_tokens.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
all_vector_lang.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dba_vector_hitcounts.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
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user_vector_hitcounts.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
user_vector_abbrev_tokens.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
user_vector_lang.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
user_vector_vocab.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
user_vector_vocab_tokens.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
all_vector_vocab.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
all_vector_vocab_tokens.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Views Related to Vector Indexes and Hybrid Vector Indexes

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vvector_memory_pool.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vecsys-
vectorindex.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vvector_index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vvector_graph_index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
vvector_partitions_index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/vecsys-
vectorindexcheckpoints.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
indexnamevectors.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>
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Oracle AI Vector Search Statistics and Initialization Parameters

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-ai-
vector-search-dictionary-statistics.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-
machine-learning-static-dictionary-views.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/oracle-ai-
vector-search-parameters.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.

Question:
<enter your question here>

Vector Search PL/SQL Packages

Provided URLs:
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dbms_vector-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_credential-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
disable_checkpoint.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_credential-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_onnx_model-procedure-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
enable_checkpoint.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
get_index_status.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
index_accuracy_query.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
index_accuracy_report.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
index_vector_memory_advisor.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
load_onnx_model-procedure.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/json-
metadata-parameters-onnx-models.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
load_onnx_model_cloud.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/query.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
rebuild_index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/rerank-
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dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_chunks-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_embedding-and-utl_to_embeddings-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_generate_text-dbms_vector.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dbms_vector_chain-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_credential-dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_lang_data.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_preference.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
create_vocabulary.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_credential-dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_lang_data.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_preference.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
drop_vocabulary.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/rerank-
dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_chunks-dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_embedding-and-utl_to_embeddings-dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_generate_text-dbms_vector_chain.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_summary.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
utl_to_text.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/supported-
languages-and-data-file-locations.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
dbms_hybrid_vector-vecse.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
search.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
searchpipeline.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
get_sql.html

Instructions:
  1. Set temperature to 0 to answer question.
  2. Open and read provided URLs to extract only relevant content and 
verbatim code examples.
  3. Answer question by making sure you only use previously extracted 
relevant content and verbatim code examples.
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Question:
<enter your question here>
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4
Generate Vector Embeddings

Oracle AI Vector Search offers Vector Utilities (SQL and PL/SQL tools) to automatically
generate vector embeddings from your unstructured data, either within or outside Oracle
Database.

Embeddings are vector representations that capture the semantic meaning of your data, rather
than the actual words in a document or pixels in an image (as explained in Overview of Oracle
AI Vector Search). A vector embedding model creates these embeddings by assigning
numerical values to each element of your data (such as a word, sentence, or paragraph).

To generate embeddings within the database, you can import and use vector embedding
models in ONNX format. To generate embeddings outside the database, you can access third-
party vector embedding models (remotely or locally) by calling third-party REST APIs.

• About Vector Generation
Learn about Vector Utility SQL functions and Vector Utility PL/SQL packages that help you
transform unstructured data into vector embeddings.

• Import Pretrained Models in ONNX Format
Oracle Database 23ai includes an ONNX runtime engine for running embedding models
directly inside the database. This section covers the process of importing existing
pretrained embedding models into Oracle database, including converting those models into
the ONNX format if they are not already converted.

• Access Third-Party Models for Vector Generation Leveraging Third-Party REST APIs
You can access third-party vector embedding models to generate vector embeddings from
your data, outside the database by calling third-party REST APIs.

• Vector Generation Examples
Run these end-to-end examples to see how you can generate vector embeddings, both
within and outside the database.

About Vector Generation
Learn about Vector Utility SQL functions and Vector Utility PL/SQL packages that help you
transform unstructured data into vector embeddings.

• Understand the Stages of Data Transformations
Your input data may travel through different stages before turning into a vector.

• About SQL Functions to Generate Embeddings
Choose to implement Vector Utility SQL functions to perform parallel or on-the-fly chunking
and embedding operations, within the database. The supplied SQL functions for vector
generation are VECTOR_CHUNKS and VECTOR_EMBEDDING.

• About PL/SQL Packages to Generate Embeddings
Choose to implement Vector Utility PL/SQL packages to perform chunking, embedding,
and text generation operations along with text processing and similarity search, both within
and outside the database. You can schedule these operations as end-to-end pipelines.
The supplied PL/SQL packages for vector generation are DBMS_VECTOR and
DBMS_VECTOR_CHAIN.
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Understand the Stages of Data Transformations
Your input data may travel through different stages before turning into a vector.

Depending on the size of your input data, which can range from small strings to very large
documents, the data passes through a pipeline of optional transformation stages from Plain
Text to Chunks to Tokens to Vectors, with Vector Index as the endpoint.

Prepare: Plain Text and Chunks

This stage prepares your unstructured data to ensure that it is in a format that can be
processed by vector embedding models.

To prepare large unstructured textual data (for example, a PDF or Word document), you may
first transform the document into plain text and then pass the resulting document through
Chunker. The chunker then splits the plain text document into multiple appropriate-sized
segments through a splitting process known as Chunking. A single document may be split into
many chunks, each transformed into a vector. A chunk can be a set of words (to capture
specific words or word pieces), sentences (to capture a specific context), or paragraphs (to
capture broader themes).

Later, you will learn about several chunking parameters and techniques that help you define
your own chunking specifications and strategies, so that you can generate relevant and
meaningful chunks according to your use case.

Splitting your data into chunks is not needed for small documents, phrases, text strings, or
short summaries. Embedding models can directly process such content into a vector
representation. This is explained in the following section.

Embed: Tokens and Vectors

You now pass the text or extracted chunks as input through a declared vector embedding
model for generating vector embeddings on each text string or chunk. Embeddings are vector
representations that capture the semantic meaning or context of your data. A vector
embedding model creates these embeddings by assigning numerical values to each element
of your data, that is, to each word, sentence, or paragraph.

The chunks are first passed through Tokenizer associated with your embedding model. The
tokenizer further splits the chunks into individual words or word pieces known as tokens. An
embedding model then embeds each token into a vector representation.

Tokenizers used by embedding models usually have limits on the size of the input text (number
of tokens) they can deal with, so it is important that you chunk your data beforehand into
appropriate-sized segments to avoid loss of text when generating embeddings. If the number
of tokens are larger than the maximum input limit imposed by the model, then some tokens get
truncated into a defined input length. Note that chunking is not needed if your text meets this
maximum input limit.

The chunker must select a text size that approximates the maximum input limit of your model.
The actual number of tokens depends on the specified tokenizer for an embedding model,
which typically uses a vocabulary list of words, numbers, punctuations, and pieces of tokens.
A vocabulary contains a set of tokens that are collected during a statistical training process.
Each tokenizer uses a different vocabulary format to process text into tokens.

For example, the BERT multilingual model uses Word-Piece encoding or the GPT model uses
Byte-Pair encoding.

The BERT model may tokenize the following sentence (containing four words):
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Embedding usecase for chunking
into the following eight tokens and also include ## (number signs) to indicate non-initial pieces
of words:

Em ##bedd ##ing use ##case for chunk ##ing
Vocabulary files are included as part of a model's distribution. You can supply a vocabulary file
(recognized by your model's tokenizer) to the chunker beforehand, so that it can correctly
estimate the token count of your input data at the time of chunking.

Populate and Query: Vector Indexes

Finally, you store the extracted vectors in a vector index to implement combined similarity and
relational searches on those vectors.

Instead of creating a vector index alone, you can also choose to create a hybrid vector index,
which is a combination of both vector index and Oracle Text search index. This lets you
implement hybrid searches to retrieve more relevant search results by performing both vector-
based similarity searches and text-based keyword searches on the same data, simultaneously.

About SQL Functions to Generate Embeddings
Choose to implement Vector Utility SQL functions to perform parallel or on-the-fly chunking and
embedding operations, within the database. The supplied SQL functions for vector generation
are VECTOR_CHUNKS and VECTOR_EMBEDDING.

Vector Utility SQL functions are intended for a direct and quick interaction with data, within
pure SQL.

VECTOR_CHUNKS

Use the VECTOR_CHUNKS SQL function if you want to split plain text into chunks (pieces of
words, sentences, or paragraphs) in preparation for the generation of embeddings, to be used
with a vector index.

For example, you can use this function to build a standalone Text Chunking system that lets
you break down a large PDF document into smaller yet semantically meaningful chunk texts.
You can experiment with your chunks by running parallel chunking operations, where you can
inspect each chunk text, accordingly amend the chunking results, and then proceed further
with other data transformation stages.

To generate chunks, this function uses the in-house implementation with Oracle Database.

For detailed information on this function, see VECTOR_CHUNKS.

VECTOR_EMBEDDING

Use the VECTOR_EMBEDDING function if you want to generate a single vector embedding for
different data types.

For example, you can use this function in information-retrieval applications or chatbots, where
you want to generate a query vector on the fly from a user's natural language text input string.
You can then query a vector field with this query vector for a fast similarity search.

To generate an embedding, this function uses a vector embedding model (in ONNX format)
that you load into the database.
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Note:

If you want to generate embeddings by using third-party vector embedding models,
then use Vector Utility PL/SQL packages. These packages let you work with both
embedding models (in ONNX format) stored in the database and third-party
embedding models (by calling third-party REST APIs).

For detailed information on this function, see VECTOR_EMBEDDING.

Related Topics

• Import Pretrained Models in ONNX Format
Oracle Database 23ai includes an ONNX runtime engine for running embedding models
directly inside the database. This section covers the process of importing existing
pretrained embedding models into Oracle database, including converting those models into
the ONNX format if they are not already converted.

• Generate Embeddings
In these examples, you can see how to use the VECTOR_EMBEDDING SQL function or the
UTL_TO_EMBEDDING PL/SQL function to generate a vector embedding from input text strings
and images.

About PL/SQL Packages to Generate Embeddings
Choose to implement Vector Utility PL/SQL packages to perform chunking, embedding, and
text generation operations along with text processing and similarity search, both within and
outside the database. You can schedule these operations as end-to-end pipelines. The
supplied PL/SQL packages for vector generation are DBMS_VECTOR and DBMS_VECTOR_CHAIN.

These packages can work with both vector embedding models in ONNX format (by importing
these models into the database) and third-party vector embedding models (by calling third-
party REST APIs). Each package is made up of subprograms, such as chainable utility
functions and vector helper procedures.

• About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass
your input data to transform into a different representation, including vectors.

• About Vector Helper Procedures
Vector helper procedures let you configure authentication credentials, preferences, and
language-specific data for use in chainable utility functions.

• Supplied Vector Utility PL/SQL Packages
Use either a lightweight DBMS_VECTOR package or a more advanced DBMS_VECTOR_CHAIN
package with full capabilities.

• Terms of Using Vector Utility PL/SQL Packages
You must understand the terms of using REST APIs that are part of Vector Utility PL/SQL
packages.

• Validate JSON Input Parameters
You can optionally validate the structure of your JSON input to the DBMS_VECTOR.UTL and
DBMS_VECTOR_CHAIN.UTL functions, which use JSON to define their input parameters.
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Related Topics

• Vector Generation Examples
Run these end-to-end examples to see how you can generate vector embeddings, both
within and outside the database.

About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass your
input data to transform into a different representation, including vectors.

Supplied Chainable Utility Functions

You can combine a set of chainable utility (UTL) functions together in an end-to-end pipeline.

Each pipeline or transformation chain can include a single function or a combination of
functions, which are applied to source documents as they are transformed into other
representations (text, chunks, summary, or vector). These functions are chained together, such
that the output from one function is used as an input for the next.

Each chainable utility function performs a specific task of transforming data into other
representations, such as converting data to text, converting text to chunks, or converting the
extracted chunks to embeddings.

At a high level, the supplied chainable utility functions include:

Function Description Input and Return Value

UTL_TO_TEXT() Converts data (for example, Word,
HTML, or PDF documents) to plain
text.

Accepts the input as CLOB or BLOB.

Returns a plain text version of the document as
CLOB.

UTL_TO_CHUNKS() Converts data to chunks. Accepts the input as plain text (CLOB or
VARCHAR2).

Splits the data to return an array of chunks
(CLOB).

UTL_TO_EMBEDDING() Converts data to a single
embedding.

Accepts the input as plain text (CLOB) or image
(BLOB).

Returns a single embedding (VECTOR).

UTL_TO_EMBEDDINGS() Converts an array of chunks to an
array of embeddings.

Accepts the input as an array of chunks
(VECTOR_ARRAY_T).

Returns an array of embeddings
(VECTOR_ARRAY_T).

UTL_TO_SUMMARY() Generates a concise summary for
data, such as large or complex
documents.

Accepts the input as plain text (CLOB).

Returns a summary in plain text as CLOB.

UTL_TO_GENERATE_TEXT() Generates text for prompts and
images.

Accepts the input as text data (CLOB) for
prompts, or as media data (BLOB) for media files
such as images.

Processes this information to return CLOB
containing the generated text.

RERANK() Reassesses and reorders an initial
list of documents based on their
similarity score.

Accepts the input as a query (CLOB) and a list of
documents (JSON).

Processes this information to return a JSON
object containing a reranked list of documents,
sorted by score.
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Sequence of Chains

Chainable utility functions are designed to be flexible and modular. You can create
transformation chains in various sequences, depending on your use case.

For example, you can directly extract vectors from a large PDF file by creating a chain of the
UTL_TO_TEXT, UTL_TO_CHUNKS, and UTL_TO_EMBEDDINGS chainable utility functions.

As shown in the following diagram, a file-to-text-to-chunks-to-embeddings chain performs a set
of operations in this order:

1. Converts a PDF file to a plain text file by calling UTL_TO_TEXT.

2. Splits the resulting text into many appropriate-sized chunks by calling UTL_TO_CHUNKS.

3. Generates vector embeddings on each chunk by calling UTL_TO_EMBEDDINGS.

Common Use Cases

Let us look at some common use cases to understand how you can customize and apply these
transformation chains:

Single-Step or Direct Transformation:

• Document to vectors:

As discussed earlier, a common use case is to automatically generate vector embeddings
from a set of documents. Embeddings are created by vector embedding models, and are
numerical representations that capture the semantic meaning of your input data (as
explained in Overview of Oracle AI Vector Search). The resulting embeddings are high-
dimensional vectors, which you can use for text classification, question-answering,
information retrieval, or text processing applications.

– You can convert a set of documents to plain text, split the resulting text into smaller
chunks to finally generate embeddings on each chunk, in a single file-to-text-to-
chunks-to-embeddings chain. See Perform Chunking With Embedding.

– For smaller documents or text strings, you can eliminate chunking (as explained in 
Understand the Stages of Data Transformations) and directly generate embeddings in
a single text-embeddings chain. See Generate Embeddings.

• Document to vectors, with chunking and summarization:

Another use case might be to generate a short summary of a document and then
automatically extract vectors from that summary.

After generating the summary, you can either generate a single vector (using
UTL_TO_EMBEDDING) or chunk it and then generate multiple vectors (using
UTL_TO_EMBEDDINGS).
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– You can convert the document to plain text, summarize the text into a concise gist to
finally create a single embedding on the summarized text, in a file-to-text-to-summary-
to-embedding chain.

– You can convert the document to plain text, summarize the text into a gist, split the gist
into chunks to finally create multiple embeddings on each summarized chunk, in a file-
to-text-to-summary-to-chunks-to-embeddings chain.

While both the chunking and summarization techniques make text smaller, they do so in
different ways. Chunking just breaks the text into smaller pieces, whereas summarization
extracts a salient meaning and context of that text into free-form paragraphs or bullet
points.

By summarizing the entire document and appending the summary to each chunk, you get
the best of both worlds, that is, an individual piece that also has a high-level understanding
of the overall document.

• Image to vectors:

You can directly generate a vector embedding based on an image, which can be used for
image classification, object detection, comparison of large datasets of images, or for a
more effective similarity search on documents that include images. Embeddings are
created by image embedding models or multimodal embedding models that extract each
visual element of an image (such as shape, color, pattern, texture, action, or object) and
accordingly assign a numerical value to each element.

See Convert Image to Embedding Using Public REST Providers.

Step-by-Step or Parallel Transformation:

• Text to vector:

A common use case might be information retrieval applications or chatbots, where you can
convert a user's natural language text query string to a query vector on the fly. You can
then compare that query vector against the existing vectors for a fast similarity search.

You can vectorize a query vector and then run that query vector against your index
vectors, in a text-to-embedding chain.

See Convert Text String to Embedding Within Oracle Database, Convert Text String to
Embedding Using Public REST Providers, and Convert Text String to Embedding Using
the Local REST Provider Ollama.

• Text to chunks:

Another use case might be to build a standalone Text Chunking system to break down a
large amount of text into smaller yet semantically meaningful pieces, in a text-to-chunks
chain.

This method also gives you more flexibility to experiment with your chunks, where you can
create, inspect, and accordingly amend the chunking results and then proceed further.

See Convert Text to Chunks With Custom Chunking Specifications and Convert File to Text
to Chunks to Embeddings Within Oracle Database.

• Prompt or media file to text:

You can communicate with Large Language Models (LLMs) to perform several language-
related tasks, such as text generation, translation, summarization, or Q&A. You can input
text data in natural language (for prompts) or media data (for images) to an LLM-powered
chat interface. LLM then processes this information to generate a text response.

– Prompt to text:
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A prompt can be an input text string, such as a question that you ask an LLM. For
example, "What is Oracle Text?". A prompt can also be a set of instructions or a
command, such as "Summarize the following ...", "Draft an email asking
for ...", or "Rewrite the following ...". The LLM responds with a textual answer,
description, or summary based on the specified task in the prompt.

See Generate Text Using Public REST Providers and Generate Text Using the Local
REST Provider Ollama.

– Image to text:

You can also prompt with a media file (such as an image) to generate a textual
analysis or description of the contents of the image, which can then be used for image
classification, object detection, or similarity search.

Here, you additionally supply a text question as the prompt along with the image. For
example, the prompt can be "What is this image about?" or "How many birds are
there in this image?".

See Describe Images Using Public REST Providers.

– Text to summary:

You can build a standalone Text Summarization system to generate a summary of
large or complex documents, in a text-to-summary chain.

This method also gives you more flexibility to experiment with your summaries, where
you can create, inspect, and accordingly amend the summarization results and then
proceed further.

See Generate Summary Using Public REST Providers.

Note:

In addition to using external LLMs for summarization, you can use Oracle
Text to generate a gist (summary) within the database. See 
UTL_TO_SUMMARY.

– RAG implementation

A prompt can include results from a search, through the implementation of Retrieval
Augmented Generation (RAG). Using RAG can mitigate inaccuracies and
hallucinations, which may occur in generated responses when using LLMs.

See SQL RAG Example.

You can additionally utilize reranking to enhance the quality of information ingested
into an LLM. See Use Reranking for Better RAG Results.

Schedule Vector Utility Packages

Some of the transformation chains may take a long time depending on your workload and
implementation, thus you can schedule to run Vector Utility PL/SQL packages in the
background.

The DBMS_SCHEDULER PL/SQL package helps you effectively schedule these packages, without
manual intervention.

For information on how to create, run, and manage jobs with Oracle Scheduler, see Oracle
Database Administrator’s Guide.
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About Vector Helper Procedures
Vector helper procedures let you configure authentication credentials, preferences, and
language-specific data for use in chainable utility functions.

At a high level, the supplied vector helper procedures include:

• Credential helper procedures to securely manage authentication credentials, which are
used to access third-party providers when making REST API calls.

Function Description

CREATE_CREDENTIAL Creates a credential name for securely storing user authentication credentials in
Oracle Database.

DROP_CREDENTIAL Drops an existing credential name.

• Preference helper procedures to manage vectorizer preferences, which are used when
creating or altering hybrid vector indexes.

Function Description

CREATE_PREFERENCE Creates a vectorizer preference in the database.

DROP_PREFERENCE Drops an existing vectorizer preference from the database.

• Chunker helper procedures to manage custom vocabulary and language data, which are
used when chunking user data.

Function Description

CREATE_VOCABULARY Loads your own vocabulary file into the database.

DROP_VOCABULARY Removes the specified vocabulary data from the database.

CREATE_LANG_DATA Loads your own language data file (abbreviation tokens) into the database.

DROP_LANG_DATA Removes abbreviation data for a given language from the database.

Related Topics

• Vector Search PL/SQL Packages
The DBMS_VECTOR, DBMS_VECTOR_CHAIN, and DBMS_HYBRID_VECTOR PL/SQL APIs are
available to support Oracle AI Vector Search capabilities.

• Text Processing Views
These views display language-specific data (abbreviation token details) and vocabulary
data related to the Oracle AI Vector Search SQL and PL/SQL utilities.

Supplied Vector Utility PL/SQL Packages
Use either a lightweight DBMS_VECTOR package or a more advanced DBMS_VECTOR_CHAIN
package with full capabilities.

• DBMS_VECTOR:

This package simplifies common operations with Oracle AI Vector Search, such as
chunking text into smaller segments, extracting vector embeddings from user data, or
generating text for a given prompt.
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Subprogram Operation Provider Implementation

Chainable Utility
Functions

UTL_TO_CHUNKS to perform
chunking

Oracle Database Calls the VECTOR_CHUNKS
SQL function under the hood

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS to
generate one or more
embeddings

Oracle Database Calls the embedding model
in ONNX format stored in the
database

Third-party REST
providers

Calls the specified third-
party embedding model

UTL_TO_GENERATE_TEXT to
generate text for prompts
and images

Third-party REST
providers

Calls the specified third-
party text generation model

RERANK to retrieve more
relevant search output

Third-party REST
providers

Calls the specified third-
party embedding model

Credential Helper
Procedures

CREATE_CREDENTIAL and
DROP_CREDENTIAL to
manage credentials for third-
party service providers

Oracle Database Stores credentials securely
for use in Chainable Utility
Functions

For detailed information on this package, see DBMS_VECTOR.

• DBMS_VECTOR_CHAIN:

This package provides chunking and embedding functions along with some text generation
and summarization capabilities. It is more suitable for text processing with similarity search
and hybrid search, using functionality that can be pipelined together for an end-to-end
search.

Subprogram Operation Provider Implementation

Chainable Utility
Functions

UTL_TO_TEXT to extract plain text
data from documents

Oracle Database Uses the Oracle Text component
(CONTEXT) of Oracle Database

UTL_TO_CHUNKS to perform
chunking

Oracle Database Calls the VECTOR_CHUNKS SQL
function under the hood

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS to generate
one or more embeddings

Oracle Database Calls the embedding model in
ONNX format stored in the
database

Third-party REST
providers

Calls the specified third-party
embedding model

UTL_TO_SUMMARY to generate
summaries

Oracle Database Uses Oracle Text

Third-party REST
providers

Calls the specified third-party text
summarization model

UTL_TO_GENERATE_TEXT to
generate text for prompts and
images

Third-party REST
providers

Calls the specified third-party text
generation model

RERANK to retrieve more relevant
search output

Third-party REST
providers

Calls the specified third-party
embedding model

Credential Helper
Procedures

CREATE_CREDENTIAL and
DROP_CREDENTIAL to manage
credentials for third-party service
providers

Oracle Database Stores credentials securely for use
in Chainable Utility Functions
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Subprogram Operation Provider Implementation

Preference Helper
Procedures

CREATE_PREFERENCE and
DROP_PREFERENCE to manage
preferences for hybrid vector
indexes

Oracle Database Creates vectorizer preferences for
use in hybrid vector indexing
pipelines

Chunker Helper
Procedures

CREATE_VOCABULARY and
DROP_VOCABULARY to manage
custom token vocabularies

Oracle Database Uses Oracle Text

CREATE_LANG_DATA and
DROP_LANG_DATA to manage
language-specific data (abbreviation
tokens)

Oracle Database Uses Oracle Text

Note:

The DBMS_VECTOR_CHAIN package requires you to install the CONTEXT component
of Oracle Text, an Oracle Database technology that provides indexing, term
extraction, text analysis, text summarization, word and theme searching, and
other utilities.

Due to underlying dependance on the text processing capabilities of Oracle Text,
note that both the UTL_TO_TEXT and UTL_TO_SUMMARY chainable utility functions
and all the chunker helper procedures are available only in this package through
Oracle Text.

For detailed information on this package, see DBMS_VECTOR_CHAIN.

Related Topics

• Supported Third-Party Provider Operations and Endpoints
Review a list of third-party REST providers and REST endpoints that are supported for
various vector generation, summarization, text generation, and reranking operations.

Terms of Using Vector Utility PL/SQL Packages
You must understand the terms of using REST APIs that are part of Vector Utility PL/SQL
packages.

Some of the Vector Utility PL/SQL APIs enable you to perform embedding, summarization, and
text generation operations outside Oracle Database, by using third-party REST providers (such
as Cohere, Google AI, Hugging Face, Generative AI, OpenAI, or Vertex AI).
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WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Validate JSON Input Parameters
You can optionally validate the structure of your JSON input to the DBMS_VECTOR.UTL and
DBMS_VECTOR_CHAIN.UTL functions, which use JSON to define their input parameters.

The JSON data is schemaless, so the amount of validation that Vector Utility package APIs do
at runtime is minimal for better performance. The APIs validate only the mandatory JSON
parameters, that is, the parameters that you supply for the APIs to run (not optional JSON
parameters and attributes).

Before calling an API, you can use subprograms in the DBMS_JSON_SCHEMA package to test
whether the input data to be specified in the PARAMS clause is valid with respect to a given
JSON schema. This offers more flexibility and also ensures that only schema-valid data is
inserted in a JSON column.

Validate JSON input parameters for the DBMS_VECTOR.UTL and DBMS_VECTOR_CHAIN.UTL
functions against the following schema:

• For the Database Provider:

– SCHEMA_CHUNK

{ "title" : "utl_to_chunks", 
  "description" : "Chunk parameters",
  "type" : "object",
  "properties" : { 
    "by"           : {"type" : "string", "enum" : [ "chars", 
"characters", "words", "vocabulary" ]   }, 
    "max"          : {"type" : "string", "pattern" : "^[1-9][0-9]*$" }, 
    "overlap"      : {"type" : "string", "pattern" : "^[0-9]+$" }, 
    "split"        : {"type" : "string", "enum" : [ "none", "newline", 
"blankline", "space", "recursively", "custom" ]  }, 
    "vocabulary"   : {"type" : "string"  }, 
    "language"     : {"type" : "string"  }, 
    "normalize"    : {"type" : "string", "enum" : [ "all", "none", 
"options" ]  }, 
      "norm_options" : {"type" : "array",  "items": {  { "type": 
"string", "enum": ["widechar", "whitespace", "punctuation"] }  },
    "custom_list"  : {"type" : "array",  "items": { "type": 
"string" }  }, 
    "extended"     : {"type" : "boolean" } },
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  "additionalProperties" : false 
}

– SCHEMA_VOCAB

{ "title" : "create_vocabulary", 
  "description" : "Create vocabulary parameters",
  "type" : "object",
  "properties" : { 
    "table_name"      : {"type" : "string" }, 
    "column_name"     : {"type" : "string" }, 
    "vocabulary_name" : {"type" : "string" }, 
    "format"          : {"type" : "string", "enum" : [ "BERT", "GPT2", 
"XLM" ]  }, 
    "cased"           : {"type" : "boolean" } },
  "additionalProperties" : false, 
  "required" : [ "table_name", "column_name", "vocabulary_name" ]
}

– SCHEMA_LANG

{ "title" : "create_lang_data", 
  "description" : "Create language data parameters",
  "type" : "object",
  "properties" : { 
    "table_name"      : {"type" : "string" }, 
    "column_name"     : {"type" : "string" }, 
    "preference_name" : {"type" : "string" }, 
    "language"        : {"type" : "string" } }, 
  "additionalProperties" : false, 
  "required" : [ "table_name", "column_name", "preference_name", 
"language" ]
}

– SCHEMA_TEXT

{ "title": "utl_to_text", 
  "description": "To text parameters",
  "type" : "object",
  "properties" : { 
    "plaintext"       : {"type" : "boolean" }, 
    "charset"         : {"type" : "string", "enum" : [ "UTF8" ] } }, 
  "additionalProperties": false 
}

– SCHEMA_DBEMB

{ "title" : "utl_to_embedding", 
  "description" : "To DB embeddings parameters",
  "type" : "object",
  "properties" : { 
    "provider"  : {"type" : "string" }, 
    "model"     : {"type" : "string" } }, 
  "additionalProperties": true, 
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  "required" : [ "provider", "model" ]
}

– SCHEMA_SUM

{ "title" : "utl_to_summary", 
  "description" : "To summary parameters",
  "type" : "object",
  "properties" : { 
    "provider"       : {"type" : "string" }, 
    "numParagraphs"  : {"type" : "number" }, 
    "language"       : {"type" : "string" }, 
    "glevel"         : {"type" : "string" }  
   }, 
  "additionalProperties" : true, 
  "required" : [ "provider" ]
}

• For REST Providers:

SCHEMA_REST

{  "title" : "REST parameters",
   "description" : "REST versions of utl_to_embedding, utl_to_summary, 
utl_to_generate_text",
   "type" : "object",
   "properties" : {
     "provider"         : {"type" : "string" },
     "credential_name"  : {"type" : "string" },
     "url"              : {"type" : "string" },
     "model"            : {"type" : "string" }
    },
   "additionalProperties" : true,
   "required" : [ "provider", "credential_name", "url", "model" ] }

Note that all the REST calls to third-party service providers share the same schema for
their respective embedding, summarization, and text generation operations.

Examples:

• To validate your JSON data against JSON schema, use the PL/SQL function or procedure
DBMS_JSON_SCHEMA.is_valid().

The function returns 1 for valid and 0 for invalid (invalid data can optionally raise an error).
The procedure returns TRUE for valid and FALSE for invalid as the value of an OUT
parameter.

l_valid := sys.DBMS_JSON_SCHEMA.is_valid(params, json(SCHEMA), 
dbms_json_schema.RAISE_ERROR);

• If you use the procedure (not function) is_valid, then you have access to the validation
errors report as an OUT parameter. This use of the procedure checks data against schema,
providing output in parameters validity (BOOLEAN) and errors (JSON).

sys.DBMS_JSON_SCHEMA.is_valid(params, json(SCHEMA), l_valid, l_errors);
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• To read a detailed validation report of errors, use the PL/SQL procedure
DBMS_JSON_SCHEMA.validate_report.

If you use the function (not the procedure) is_valid, then you do not have access to such
a report. Instead of using the function is_valid, you can use the PL/SQL function
DBMS_JSON_SCHEMA.validate_report in a SQL query to validate and return the same full
validation information that the reporting OUT parameter of the procedure is_valid provides,
as a JSON type instance.

SELECT JSON_SERIALIZE(DBMS_JSON_SCHEMA.validate_report('json',SCHEMA) 
returning varchar2 PRETTY);

Related Topics

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

• DBMS_JSON_SCHEMA

Import Pretrained Models in ONNX Format
Oracle Database 23ai includes an ONNX runtime engine for running embedding models
directly inside the database. This section covers the process of importing existing pretrained
embedding models into Oracle database, including converting those models into the ONNX
format if they are not already converted.

Open Neural Network Exchange or ONNX is an open standard format of machine learning
models. Consider the following use cases:

• Using complex media input such as text or image for similarity search

• Perform text classification

• Perform reranking

You need vector embedding of the media input to perform all the tasks mentioned above.
ONNX pipeline models allows you to convert text and/or image models into ONNX format if
they are not already in ONNX format, import the ONNX format models into Oracle Database,
and generate embeddings from your data within the database. The ONNX format models
imported to the database could be used for tasks such as search and classification.

Pretrained models are models that are already trained on a media data (text, image, etc.) and
saved to a storage format for future use. Hugging Face is the most popular platform that hosts
pretrained models typically created with PyTorch.

The Python package oml.utils contains three classes: ONNXPipeline, ONNXPipelineConfig,
and MiningFunction. The package handles ONNX pipeline generation and export, while also
incorporating the necessary pre- and post-processing steps.

• ONNXPipeline : Allows you to import a pretrained model (Your own pretrained model or
one of the supported models from Hugging Face)
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• ONNXPipelineConfig : Allows you to configure the attributes of pretrained model (Your
own pretrained model or one of the supported models from Hugging Face)

• MiningFunction: Allows you to choose from one of the following mining options:

– EMBEDDING : Corresponds to text and image embedding

– CLASSIFICATION : Corresponds to text classification

– REGRESSION : Corresponds to re-ranking

WARNING:

EmbeddingModel and EmbeddingModelConfig are deprecated. Instead, please use
ONNXPipeline and ONNXPipelineConfig respectively. The details of the deprecated
classes can be found in Python Classes to Convert Pretrained Models to ONNX
Models (Deprecated). If a you choose to use a deprecated class, a warning message
will be shown indicating that the classes will be removed in the future and advising
the user to switch to the new class.

The ONNX pipeline models are available for text embedding, image embedding, multi-modal
embedding, text classification and re-ranking.

• ONNX Pipeline Models : Text Embedding
ONNX pipeline models provides text embedding models that accepts text as input and
produces embeddings as output. The pipeline models also provide the necessary pre-
processing and post-processing needed for the text.

• ONNX Pipeline Models : Image Embedding
ONNX pipeline models provides image embedding models that accepts image as an input
and produces embeddings as output. The pipeline models also provide the necessary pre-
processing.

• ONNX Pipeline Models: CLIP Multi-Modal Embedding
ONNX pipeline models provides multi-modal embedding models that accepts both image
and text as an input and produces embeddings as output. The pipeline models also
provide the necessary pre-processing needed.

• ONNX Pipeline Models: Text Classification
ONNX pipeline models provides text classification models that accepts text strings as input
and produces the probablity of the input string belonging to a specific label. The pipeline
models also provide the necessary pre-processing and post-processing.

• ONNX Pipeline Models: Reranking Pipeline
ONNX pipeline models provide a reranking pipeline that calculates similarity score for a
given pair of texts.

• Convert Pretrained Models to ONNX Model: End-to-End Instructions for Text Embedding
This section provides end-to-end instructions from installing the OML4Py client to
downloading a pretrained embedding model in ONNX-format using the Python utility
package offered by Oracle.

• Import ONNX Models into Oracle Database End-to-End Example
Learn to import a pretrained embedding model that is in ONNX format and generate vector
embeddings.
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ONNX Pipeline Models : Text Embedding
ONNX pipeline models provides text embedding models that accepts text as input and
produces embeddings as output. The pipeline models also provide the necessary pre-
processing and post-processing needed for the text.

Note:

• This API is updated for 23.7. The version used for 23.6 and below used python
packages EmbeddingModel and EmbeddingModelConfig. These packages are
replaced with ONNXPipeline and ONNXPipelineConfig respectively. Oracle
recommends that you use the latest version. You can find the details of the
deprecated python classes in Python Classes to Convert Pretrained Models to
ONNX Models (Deprecated).

• This feature will only work on OML4Py 2.1 client. It is not supported on the
OML4Py server.

• In-database embedding models must include tokenization and post-processing.
Providing only the core ONNX model to DBMS_VECTOR.LOAD_ONNX_MODEL is
insufficient because you need to handle tokenization externally, pass tensors into
the SQL operator, and convert output tensors into vectors.

• Oracle is providing a Hugging Face all-MiniLM-L12-v2 model in ONNX format,
available to download directly to the database using
DBMS_VECTOR.LOAD_ONNX_MODEL. For more information, see the blog post Now
Available! Pre-built Embedding Generation model for Oracle Database 23ai.

If you do not have a pretrained embedding model in ONNX-format to generate embeddings for
your data, Oracle offers a Python package that downloads pretrained models from an external
source, converts the model to ONNX format augmented with pre-processing and post-
processing steps, and imports the resulting ONNX-format model into Oracle Database. Use the
DBMS_VECTOR.LOAD_ONNX_MODEL procedure or export2db() function to import the file as a
mining model. (eport2db() is a method on the ONNXPipeline object). Then leverage the in-
database ONNX Runtime with the ONNX model to produce vector embeddings.

At a high level, the Python package performs the following tasks:

• Downloads the pretrained model from external source (example: from Hugging Face
repository) to your system

• Augments the model with pre-processing and post-processing steps and creates a new
ONNX model

• Validates the augmented ONNX model

• Loads into the database as a data mining model or optionally exports to a file

The Python package can take any of the models in the preconfigured list as input. Alternatively,
you can use the built-in template that contains common configurations for certain groups of
models such as text or image models. To understand what a preconfigured list, what a built-in
template is, and how to use them, read further.

Limitations

This table describes the limitations of the Python package.
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Note:

This feature is available with the OML4Py 2.1 client only.

Parameter Description

Transformer Model Type Supports transformer models that supports text
embedding.

Model Size Model size should be less than 1GB. Quantization
can help reduce the size.

Tokenizers Must be either BERT, GPT2, SENTENCEPIECE,
CLIP, or ROBERTA.

Preconfigured List of Models

Preconfigured list of models are common models from external resource repositories that are
provided with the Python package. The preconfigured models have an existing specification.
Users can create their own specification using the text template as a starting point. To get a list
of all model names in the preconfigured list, you can use the show_preconfigured function.

Templates

The Python package provides built-in text template for you to configure the pretrained models
with pre-processing and post-processing operations. The template has a default specification
for the pretrained models. This specification can be changed or augmented to create custom
configurations. The text template uses Mean Pooling and Normalization as post-processing
operations by default.

End to End Example for Converting Text Models to ONNX Format and Storing them as a
File or in a Database:

To use the Python package oml.utils, ensure that you have the following:

• OML4Py 2.1 Client running on Linux X64 for On-Premises Databases

• Python 3.12 (the earlier versions are not compatible)

.

1. Start Python in your work directory.

python3

Python 3.12.6 | (main, Feb 27 2024, 17:35:02) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

2. On the OML4Py client, load the Python classes:

from oml.utils import ONNXPipeline, ONNXPipelineConfig

3. You can get a list of all preconfigured models by running the following:

ONNXPipelineConfig.show_preconfigured()
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4. To get a list of available templates:

ONNXPipelineConfig.show_templates()

5. Choose from:

• Generating a text pipeline using a preconfigured model "sentence-transformers/all-
MiniLM-L6-v2" and save it in a local directory:

#generate from preconfigured model "sentence-transformers/all-MiniLM-L6-
v2"
pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2")
pipeline.export2file("your_preconfig_file_name",output_dir=".")

• Generating a text pipeline using a preconfigured model "sentence-transformers/all-
MiniLM-L6-v2" and save it in the database:

#generate from preconfigured model "sentence-transformers/all-MiniLM-L6-
v2"
pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2")
pipeline.export2db("your_preconfig_file_name")

Note:

In order for export2db( ) to succeed, a connection is required to the
database. It is assumed that you have provided your credentials in the
following code and the connection is successful.

import oml 
oml.connect(user="username",password="password",dsn="dsn");

• Generating a text pipeline with a template and save it in a local directory

from oml.utils import ONNXPipeline, ONNXPipelineConfig
config   = ONNXPipelineConfig.from_template("text", max_seq_length=256,
           distance_metrics=["COSINE"], quantize_model=True)
pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2",
           config=config)
pipeline.export2file("your_preconfig_model_name", output_dir=".")

Let's understand the code:

from oml.utils import ONNXPipeline, ONNXPipelineConfig
This line imports two classes, ONNXPipeline and ONNXPipelineConfig.

In the preconfigured models first example, where the ONNX format model is saved in a
particular directory:
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• pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2") creates an instance of the ONNXPipeline class, loading a pretrained model
specified by the model_name parameter. pipeline is the text embedding model object.
sentence-transformers/all-MiniLM-L6-v2 is the model name for computing
sentence embeddings. This is the model name under Hugging Face. Oracle supports
models from Hugging Face.

• The export2file command creates an ONNX format model with a user-specified
model name in the file. your_preconfig_file_name is a user defined ONNX model file
name.

• output_dir="." specifies the output directory where the file will be saved. The "."
denotes the current directory (that is, the directory from which the script is running).

In the preconfigured models second example, where the ONNX model is saved in the
databse:

• pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2") creates an instance of the ONNXPipleline class, loading a pretrained model
specified by the model_name parameter. pipeline is the text embedding model object.
sentence-transformers/all-MiniLM-L6-v2 is the model name for computing
sentence embeddings. This is the model name under Hugging Face. Oracle supports
models from Hugging Face.

• The export2db command creates an ONNX format model with a user defined model
name in the database. your_preconfig_model_name is a user defined ONNX model
name.

In the template example:

• ONNXPipelineConfig.from_template("text", max_seq_length=256
distance_metrics=["COSINE"], quantize_model=True): This line creates a
configuration object for an embedding model using a method called from_template.
The "text" argument indicates the name of the template. The max_seq_length=512
parameter specifies the maximum length of input to the model as number of tokens.
There is no default value. Specify this value for models that are not preconfigured.

• pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2", config=config) initializes an ONNXPipeliene instance with a specific model and
the previously defined configuration. The model_name="all-MiniLM-L6-v2" argument
specifies the name or identifier of the pretrained model to be loaded.

• The export2file command creates an ONNX format model with a user defined model
name in the file. your_preconfig_model_name is a user defined ONNX model name.

• output_dir="." specifies the output directory where the file will be saved. The "."
denotes the current directory (that is, the directory from which the script is running).
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Note:

• The model size is limited to 1 gigabyte. For models larger than 400MB,
Oracle recommends quantization.

Quantization reduces the model size by converting model weights from
high-precision representation to low-precision format. The quantization option
converts the weights to INT8. The smaller model size enables you to cache
the model in shared memory further improving the performance.

• The .onnx file is created with opset version 17 and ir version 8. For more
information about these version numbers, see https://onnxruntime.ai/docs/
reference/compatibility.html#onnx-opset-support.

6. Exit Python.

exit()

7. Inspect if the converted models are present in your directory.

Note:

ONNX files are only created when export2file is used. If export2db is used, no
local ONNX files will be generated and the model will be saved in the database.

List all files in the current directory that have the extension onnx.

ls -ltr *.onnx

The Python utility package validates the embedding text model before you can run them
using ONNX Runtime. Oracle supports ONNX embedding models that conform to string
as input and float32 [<vector dimension>] as output.

If the input or output of the model doesn't conform to the description, you receive an error
during the import.

8. Choose from:

• Load the ONNX model to your database using PL/SQL:

a. You can load the ONNX model using this syntax:

BEGIN
   DBMS_VECTOR.LOAD_ONNX_MODEL(
     directory => 'ONNX_IMPORT',
     file_name => 'all-MiniLM-L6.onnx',
     model_name => 'ALL_MINILM_L6');
END;
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b. Move the ONNX file named your_template_file_name to a directory on the
database server, and create a directory on the file system and in the database for
the import.

mkdir -p /tmp/models
sqlplus / as sysdba
alter session set container=ORCLPDB;

Apply the necessary permissions and grants. In this example, we are using a
pluggable database named ORCLPDB.

-- directory to store ONNX files for import
CREATE DIRECTORY ONNX_IMPORT AS '/tmp/models';
-- grant your OML user read and write permissions on the directory
GRANT READ, WRITE ON DIRECTORY ONNX_IMPORT to OMLUSER;
-- grant to allow user to import the model
GRANT CREATE MINING MODEL TO OMLUSER;

• Load the ONNX model to your database using Python:

9. Verify the model is in the database:

At your operating system prompt, start SQL*Plus, connect to it :

sqlplus OML_USER/password@pdbname_medium;

SQL*Plus: Release 23.0.0.0.0 - Production on Wed May 1 15:33:29 2024
Version 23.4.0.24.05

Copyright (c) 1982, 2024, Oracle. All rights reserved.

Last Successful login time: Wed May 01 2024 15:27:06 -07:00

Connected to:
Oracle Database 23ai Enterprise Edition Release 23.0.0.0.0 - Production
Version 23.4.0.24.05

List the ONNX model in the database to make sure it was loaded:

SQL> select MODEL_NAME, ALGORITHM from user_mining_models WHERE 
MODEL_NAME='YOUR_PRECONFIG_MODEL_NAME';

MODEL_NAME ALGORITHM
-------------------------------------
YOUR_PRECONFIG_MODEL_NAME ONNX

DBMS_VECTOR.LOAD_ONNX_MODEL is only needed if export2file was used to save the ONNX
model file to the local system instead of using export2db to save the model in the database.
The DBMS_VECTOR.LOAD_ONNX_MODEL imports the ONNX format model into the Oracle Database
to leverage the in-database ONNX Runtime to produce vector embeddings using the
VECTOR_EMBEDDING SQL operator.
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See Also:

• Oracle Database SQL Language Reference for information about the
VECTOR_EMBEDDING SQL function

• Oracle Database PL/SQL Packages and Types Reference for information about
the IMPORT_ONNX_MODEL procedure

• Oracle Database PL/SQL Packages and Types Reference for information about
the LOAD_ONNX_MODEL procedure

• Oracle Machine Learning for SQL Concepts for more information about importing
pretrained embedding models in ONNX format and generating vector
embeddings

• https://onnx.ai/onnx/intro/ for ONNX documentation

ONNX Pipeline Models : Image Embedding
ONNX pipeline models provides image embedding models that accepts image as an input and
produces embeddings as output. The pipeline models also provide the necessary pre-
processing.

Image Embedding Pipeline

1. Input : Input to the pipeline is an image. Each image is represented as an array of bytes.
This can be a BLOB when using SQL or a similar in-memory byte representation like
io.ByetIO in Python.

2. Pre-Processing : The image embedding pipeline utilizes an Image Processor in the pre-
processing step. The Image Processor is dependent on the model configuration in the
Hugging Face repository. When you provide a pretrained image model (e.g. "google/vit-
base-patch16-224"), the pipeline builder will look up the Image Processor class from the
model's configuration and determine if it's supported by looking up the Image Processor
name in pipeline builder templates. If a match is found then the specific Image Processor is
loaded and configured according to the template. The following table shows the
relationship between pipeline builder templates and their corresponding Image Processor
classes. Image Processor classes are provided by the transformer library.

Note:

You do not need to reference these templates when using preconfigured image
models. However any non-preconfigured model is template driven and these
templates can be used for such models.

Template Image Processor Class

Image_ViT transformers.ViTImageProcessor

Image_ConvNext transformers.ConvNextImageProcessor

Each Image Processor has several possible operations that will modify the input image in a
specific way. Each of these operations is represented by a configuration in the Image
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Processor template. The modification of these operations and their respective
configuration is not supported. You are able to view the configurations and should be
aware of them. The following table shows the image operations and their respective
configurations:

Table 4-1    Image Processor Configurations

Image Processor Operation Description

Decode Converts the compressed image to 3-D raster
format.

Resize Resizes the given image to the new shape.

Rescale Rescales (element wise multiplication) an image
with a numeric value.

Normalize Normalizes (adjusts the intensity values of pixels
to a desired range, often between 0 to 1) an
image using the given mean and standard
deviation (std) using the following formulation:
(image - mean) / std

CenterCrop Crops the image with a fixed size from the
center.

Note:

The Image pre-processors are considered to be fixed and modifications are not
allowed. We are exposing these details for your information and understanding.

3. Original Model: Pre-trained pytorch model from Hugging Face repository. The repository
also contain preconfigured models which have an existing specification. To get a list of all
model names in the preconfigured list, you can use the show_preconfigured function. You
can also create your own specification using the above mentioned templates as a starting
point.

4. Output : The pipeline generates embeddings for each input image.

Image Embedding Examples

1. Exporting a pre-configured image model:

from oml.utils import ONNXPipeline
pipeline =ONNXPipeline("google/vit-base-patch16-224")
pipeline.export2file("your_preconfig_model_name")

This example uses the google/vit-base-patch16-224 model, which is a pre-configured
model shipped in OML4Py 2.1. The pipeline is exported to a file which will result in a file
your_preconfig_model_name.onnx in the current directory. This model can optionally be
exported directly to the database using the pipeline.export2db function. Although the
exported pipeline will just produce embeddings, not a classification output, it is possible to
train an OML classification model to take these embeddings and produce the desired
classification.

2. Exporting a non pre-configured model with a template:
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Note:

Refer to this section for understanding the templates

from oml.utils import ONNXPipeline,ONNXPipelineConfig
import oml
config = ONNXPipelineConfig.from_template("Image_ViT")
pipeline = ONNXPipeline("nateraw/food",config=config)
oml.connect("pyquser","pyquser",dsn="pydsn")
oml.export2db("your_preconfig_model_name")

In this example, since the nateraw/food model is not included as a preconfigured model in
OML4Py 2.1, a template approach was chosen. Since this is a ViT based model, the ViT
template is selected.

The process of loading a image model converted to a ONNX format is very similar to the
ONNX format model generated from text. Refer to steps 6-9 from ONNX Pipeline Models : Text
Embedding for understanding how to load a ONNX model and use it further.

ONNX Pipeline Models: CLIP Multi-Modal Embedding
ONNX pipeline models provides multi-modal embedding models that accepts both image and
text as an input and produces embeddings as output. The pipeline models also provide the
necessary pre-processing needed.

CLIP Multi-Modal Embedding Pipeline

CLIP models are multi-modal which allows you to perform embedding on both text and image
input data. The main advantage of this model is to do image-text similarity. You can compare
vectors related to text snippets and a given image, to understand which text can better
describe given image. The pipeline generator will generate two ONNX pipeline models for a
pretrained CLIP model, distinguished by their suffixes. The pipeline model for images is
suffixed with _img and the model for text is suffixed with _txt. The same models with their
suffixes will be loaded to the database when using export2db. For performing CLIP related
tasks such as image-text similarity, both models will need to be used at inference time.

1. Input: CLIP models consist of two pipelines: an image embedding pipeline and a text
embedding pipeline. The Image pipeline takes images as described in the Image
Embedding Pipeline section of ONNX Pipeline Models : Image Embedding, and the text
Pipeline takes text as described in ONNX Pipeline Models : Text Embedding (Text
Embedding support was introduced in OML4Py 2.0).

2. Pre-processing: The image pipeline for CLIP models utilizes the same pre-processing
strategy as described in the Image Embedding Pipeline section of ONNX Pipeline Models :
Image Embedding. That is, an image processor that matches the model's configuration is
utilized to prepare the images. The text pipeline utilizes a specific tokenizer: the
CLIPTokenizer (transformers.models.clip.CLIPTokenizer).

3. Post-processing: As a post-processing step, Normalization is added to both the image
and text pipelines.

4. Output: Both models will produce vectors of the same shape that can then be compared
using some similarity measure.
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CLIP Multi-Modal Embedding Examples

1. Exporting a pre-configured image model to a file:
The following example will produce two pipelines called clip_img.onnx and clip_txt.onnx,
which can be used for image and text embeddings respectively.

from oml.utils import ONNXPipeline
pipeline = ONNXPipeline("openai/clip-vit-large-patch14")
pipeline.export2file("clip")

2. Exporting a pre-configured image model to the database:
This example will produce two in-database models called clip_img and clip_txt, which
can be used for image and text embeddings respectively.

fromoml.utils import ONNXPipeline
import oml
pipeline = ONNXPipeline("openai/clip-vit-large-patch14")
oml.connect("pyquser","pyquser",dsn="pydsn") 
pipeline.export2db("clip")

3. Exporting a non pre-configured with a template to a file:
This example will work for clip models that are not preconfigured. It will create two files
called clip_14_img.onnx and clip_14_txt.onnx.

from oml.utils import ONNXPipeline, ONNXPipelineConfig
config = ONNXPipelineConfig.from_template("multimodal_clip")
pipeline = ONNXPipeline("openai/clip-vit-base-patch16",config=config)
pipeline.export2file("clip_16")

For an end to end example of using CLIP to generate multi-modal embeddings, see Generate
Multi-modal Embeddings Using CLIP.

ONNX Pipeline Models: Text Classification
ONNX pipeline models provides text classification models that accepts text strings as input and
produces the probablity of the input string belonging to a specific label. The pipeline models
also provide the necessary pre-processing and post-processing.

In addition to text embedding models, Hugging Face repository also hosts transformer models
that can be used for text classification. These models are typically fine-tuned embedding
models on which a classification "head" was appended. The head changes the output of the
model from a vector of embeddings to a list of labels and probabilities. For text based
classification tasks such as sentiment analysis, you can generate a Text Classification Pipeline
using OML4Py 2.1.

Text Classification Pipeline

1. Input: Input to the text classification pipeline is provided in the form of a batch, or array, of
1 ore more text strings. Each text string provided in the input will correspond to an output
list containing the labels and probabilities.

2. Pre-Processing: Similar to text embedding pipeline, the text classification pipeline also
configures a tokenizer for tolenizing the text inputs. The following tokenizer classes are
supported in OML4Py 2.1:
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Table 4-2    Tokenizer Classes available for Text Classifiaction Pipeline

Tokenizer Class Tokenizer Type

transformers.models.bert.BertTokenizer BERT
transformers.models.clip.CLIPTokenizer CLIP
transformers.models.distilbert.DistilB
ertTokenizer

BERT

transformers.models.gpt2.GPT2Tokenizer GPT2
transformers.models.mpnet.MPNetTokeniz
er

BERT

transformers.models.roberta.tokenizati
on_roberta.RobertaTokenizer

ROBERTA

transformers.models.xlm_roberta.XLMRob
ertaTokenizer

SENTENCEPIECE

Note:

A tokenizer is automatically configured based on the tokenizer class configured
for the model on Hugging Face. Tokenizer classes are provided by the
transformer library. If the tokenizer class configured for the model in Hugging
Face is not supported by OML4Py 2.1, an error will be raised.

3. Original Model: The original model must be a pre-trained PyTorch model in Hugging Face
repository or from the local file system. Models on the local file system must match the
Hugging Face format.

4. Post-Processing: The text classification pipeline provides a softmax function for post-
processing by default. The softmax function will normalize the set of scores (logits)
produced by the model into a probability distribution where each value is normalized to a
range of [0,1]and all values sum to 1. You can choose to not include the softmax post-
processing by providing an empty list of post-processors when generating the pipeline in
OML4Py 2.1.

5. Output: The output of the classification pipeline is a list of probabilities for each input
string. The length of the list is equal to the total number of classification targets or labels.

The pipeline generator will attempt to use label data provided by the model's config in Hugging
Face. This metadata is typically found in the config.json file in the label2id property. If this
property is not found in a model's config.json then the pipeline generator will use the metadata
that you provide or default to using the output index as the label. If you provide label metadata,
it takes priority over the metadata provided in the config.json on the Hugging Face repositpry.

Note:

Label metadata does not become part of the ONNX model. It is only applied when
exporting the model to the db with export2db.

Text Classification Pipeline Examples

In order to generate ONNX pipeline models for image classification, MiningFunction class is
used from the python utilities. The MiningFunction class can take one of the three values:
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EMBEDDING, CLASSIFICATION, and REGRESSION. You can choose one depending on the task
which you would like to perform. The MiningFunction enum is defined as follows :

class MiningFunction(Enum) :
    EMBEDDING = 1
    CLASSIFCATION = 2
    REGRESSION = 3

Since you are working on text classification pipeline, you would choose CLASSIFICATION or 2
(Enum) for the class MiningFunction

WARNING:

EmbeddingModel and EmbeddingModelConfig are deprecated. Instead, please use
ONNXPipeline and ONNXPipelineConfig respectively. The details of the deprecated
classes can be found in Python Classes to Convert Pretrained Models to ONNX
Models (Deprecated). If a you choose to use a deprecated class, a warning message
will be shown indicating that the classes will be removed in the future and advising
the user to switch to the new class.

1. Example for generating a text pipeline with a template:

from oml.utils import ONNXPipeline,ONNXPipelineConfig,MiningFunction
config = ONNXPipelineConfig.from_template("text",max_seq_length=512)
pipeline = ONNXPipeline("SamLowe/roberta-base-
go_emotions",config=config,function=MiningFunction.CLASSIFICATION)
pipeline.export2file("emotions","testouput")

2. Importing the text classification pipeline generated in the above example in the DB (SQL)

Note:

The following code assumes that you have created a directory in PL/SQL named
'ONNX_IMPORT'

BEGIN
    DBMS_VECTOR.LOAD_ONNX_MODEL(
    'ONNX_IMPORT',
    'emotions.onnx',
    'emotions',
    
JSON('{"function":"classification","classificationProbOutput":"logits","inp
ut":{"input":["DATA"]},
        "labels":
["admiration","amusement","anger","annoyance","approval","caring","confusio
n","curiosity",
                  
"desire","disappointment","disapproval","disgust","embarrassment","exciteme
nt","fear","gratitude",
                  
"grief","joy","love","nervousness","optimism","pride","realization","relief
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","remorse","sadness","surprise","neut"]}')
    );
END;

In this example the label metadata is being applied when invoking the
DBMS_VECTOR.LOAD_ONNX_MODEL function to import the ONNX pipeline into the database.
Please recall that the "labels" property is part of the JSON argument to the function and
not a part of the ONNX file. The labels must be provided separately (if not provided only
the numerical indices of the output will be used). When exporting directly to the database
from OML4Py using the export2db function, you can either rely on the default label
metadata provided in the model's configuration on Hugging Face, or provide your own
label metadata via a template argument.

3. Example for exporting a text classification pipeline with default label metadata:

from oml.utils importONNXPipeline,ONNXPipelineConfig,MiningFunction
import oml
config = 
ONNXPipelineConfig.from_template("text",max_seq_length=512,labels=["admirat
ion","amusement","anger","annoyance","approval","caring",
                                          
"confusion","curiosity","desire","disappointment","disapproval","disgust","
embarrassment","excitement",
                                          
"fear","gratitude","grief","joy","love","nervousness","optimism","pride","r
ealization","relief",
                                          
"remorse","sadness","surprise","neut"])
pipeline = ONNXPipeline("SamLowe/roberta-base-
go_emotions",config=config,function=MiningFunction.CLASSIFICATION)
oml.connect("pyquser","pyquser",dsn="pydsn")
pipeline.export2db("emotions")

In this example the pipeline is exported with label metadata that you provided in the
template. This example is a combination of the examples provided in the previous two
steps.

4. Example for scoring a text classification pipeline:

select prediction(emotions using 'Today is a good day' as data),
         prediction_probability(emotions using 'Today is a good day'as 
data) from dual;

ONNX Pipeline Models: Reranking Pipeline
ONNX pipeline models provide a reranking pipeline that calculates similarity score for a given
pair of texts.

Reranking Pipeline

Reranking models (also known as cross-encoders or rerankers) calculate a similarity score for
given pairs of texts. Instead of encoding the input text into a fixed-length vector as text
embedding models do, rerankers encode two input texts simultaneously and produces a
similarity score for the pair. By default it outputs a logit which can be converted to a number
between 0 and 1 by applying a sigmoid activation function on it. Although you can compute
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similarity score between two texts through embedding models by first computing the
embeddings of the texts and then applying cosine similarity, the re-ranker models usually
provide superior performance and they can be used to re-rank the top-k results from an
embedding model.

1. Input: There are two inputs to the reranking pipeline named first_input and
second_input. Each contains an array of one or more text strings. The two inputs should
have equal number of text strings. An array will be produced for each pair of texts from
first_input andsecond_input. For example, for the following input pairs two arrays are
produced, one for the pair'hi' and 'hi' and the other for the pair 'halloween' and
'hello':
{'first_input':['hi','halloween'],'second_input':['hi','hello']}

2. Pre-Processing:
Pre-processing for reranking pipeline includes tokenization. The tokenizer class:
transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer is
supported in OML4Py 2.1 for reranking models.

3. Output: The output of a reranking pipeline is an array of similarity scores, one for each
input text pair. For the above example in the Input section, the output similarity score is
9.290878 for the pair 'hi' and 'hi' and 4.3913193 for the pair 'halloween' and
'hello'.

Reranking Pipeline Examples

1. Generating a Reranking Pipeline:

mn = 'BAAI/bge-reranker-base'
em = ONNXPipeline(mn, function=MiningFunction.REGRESSION)
mf = 'bge-reranker-base'
em.export2file(mf)

2. Importing the reranker model to the database:

BEGIN 
DBMS_VECTOR.LOAD_ONNX_MODEL('DM_DUMP','bge-reranker-
base.onnx','doc_model', JSON('{"function" : "regression", 
                            "regressionOutput" : "output", "input":
{"first_input": ["DATA1"],"second_input": ["DATA2"]}}'));
END;

3. Obtain the similarity score in the database:

SELECT prediction(doc_model USING 'what is panda?' as DATA1, 'hi' as 
DATA2) from dual;

The above example produces a similarity score between two text strings using the re-
ranker ONNX pipeline imported in step 2. The score range from -infinity to +infinity. Score
close to +infinity indicates a high similarity between the two strings, and score closer to -
infinity indicate low similarity between the strings. A sigmoid function can map the similarity
score to a float value in the range [0,1]. A sample output score corresponding to the above
example is shown here:

PREDICTION(DOC_MODELUSING'WHATISPANDA?'ASDATA1,'HI'ASDATA2)
-----------------------------------------------------------
                    -7.73E+000
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Convert Pretrained Models to ONNX Model: End-to-End Instructions for Text
Embedding

This section provides end-to-end instructions from installing the OML4Py client to downloading
a pretrained embedding model in ONNX-format using the Python utility package offered by
Oracle.

Note:

This example provides end to end instructions for converting pretrained text models
to ONNX models. Steps 1 - 9 are identical for image models and multi-modals. You
can use appropriate code/syntax mentioned in the corresponding topics to convert
image models and multi models to ONNX pipeline models.

These instructions assume you have configured your Oracle Linux 8 repo in /etc/
yum.repos.d, configured a Wallet if using an Autonomous Database, and set up a proxy if
needed.

1. Install Python:

sudo yum install libffi-devel openssl openssl-devel tk-devel xz-devel zlib-
devel bzip2-devel readline-devel libuuid-devel ncurses-devel libaio
mkdir -p $HOME/python
wget https://www.python.org/ftp/python/3.12.6/Python-3.12.6.tgz
tar -xvzf Python-3.12.6.tgz --strip-components=1 -C $HOME/python
cd $HOME/python
./configure --prefix=$HOME/python
make clean; make
make altinstall

2. Set variables PYTHONHOME, PATH, and LD_LIBRARY_PATH:

export PYTHONHOME=$HOME/python
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH

3. Create symlink for python3 and pip3:

cd $HOME/python/bin
ln -s python3.12 python3
ln -s pip3.12 pip3

4. Install Oracle Instant client if you will be exporting embedded models to the database from
Python. If you will be exporting to a file, skip steps 4 and 5 and see the note under
environment variables in step 6:

cd $HOME
wget https://download.oracle.com/otn_software/linux/instantclient/2340000/
instantclient-basic-linux.x64-23.4.0.24.05.zip
unzip instantclient-basic-linux.x64-23.4.0.24.05.zip
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5. Set variable LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$HOME/instantclient_23_4:$LD_LIBRARY_PATH

6. Create an environment file, for example, env.sh, that defines the Python and Oracle
Instant client environment variables and source these environment variables before each
OML4Py client session. Alternatively, add the environment variable definitions to .bashrc
so they are defined when the user logs into their Linux machine.

# Environment variables for Python
export PYTHONHOME=$HOME/python
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH

Note:

Environment variable for Oracle Instant Client - only if the Oracle Instant Client is
installed for exporting models to the database.
export LD_LIBRARY_PATH=$HOME/instantclient_23_4:$LD_LIBRARY_PATH
.

7. Create a file named requirements.txt that contains the required third-party packages listed
below.

--extra-index-url https://download.pytorch.org/whl/cpu
pandas==2.2.2
setuptools==70.0.0
scipy==1.14.0
matplotlib==3.8.4
oracledb==2.4.1
scikit-learn==1.5.1
numpy==2.0.1
onnxruntime==1.20.0
onnxruntime-extensions==0.12.0
onnx==1.17.0
torch==2.6.0
transformers==4.49.0
sentencepiece==0.2.0

8. Upgrade pip3 and install the packages listed in requirements.txt.

pip3 install --upgrade pip
pip3 install -r requirements.txt

9. Install OML4Py client. Download OML4Py 2.1 client from OML4Py download page and
upload it to the Linux machine.

unzip oml4py-client-linux-x86_64-2.1.zip
pip3 install client/oml-2.1-cp312-cp312-linux_x86_64.whl
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10. Get a list of all preconfigured models. Start Python and import ONNXPipelineConfig from
oml.utils.

python3

from oml.utils import ONNXPipelineConfig

ONNXPipelineConfig.show_preconfigured()

['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-MiniLM-L6-v2',
'sentence-transformers/multi-qa-MiniLM-L6-cos-v1',
'sentence-transformers/distiluse-base-multilingual-cased-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'BAAI/bge-small-en-v1.5',
'BAAI/bge-base-en-v1.5',
'taylorAI/bge-micro-v2',
'intfloat/e5-small-v2',
'intfloat/e5-base-v2',
'thenlper/gte-base',
'thenlper/gte-small',
'TaylorAI/gte-tiny',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'intfloat/multilingual-e5-base',
'intfloat/multilingual-e5-small',
'sentence-transformers/stsb-xlm-r-multilingual',
'Snowflake/snowflake-arctic-embed-xs',
'Snowflake/snowflake-arctic-embed-s',
'Snowflake/snowflake-arctic-embed-m',
'mixedbread-ai/mxbai-embed-large-v1',
'openai/clip-vit-large-patch14',
'google/vit-base-patch16-224',
'microsoft/resnet-18',
'microsoft/resnet-50',
'WinKawaks/vit-tiny-patch16-224',
'Falconsai/nsfw_image_detection',
'WinKawaks/vit-small-patch16-224',
'nateraw/vit-age-classifier',
'rizvandwiki/gender-classification',
'AdamCodd/vit-base-nsfw-detector',
'trpakov/vit-face-expression',
'BAAI/bge-reranker-base']

11. Choose from:

• To generate an ONNX file that you can manually upload to the database using the
DBMS_VECTOR.LOAD_ONNX_MODEL, refer to step 3 of SQL Quick Start and skip steps 12
and 13.

• To upload the model directly into the database, skip this step and proceed to step 12.
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Export a preconfigured embedding model to a local file. Import ONNXPipeline and
ONNXPipelineConfig from oml.utils. This exports the ONNX-format model to your local
file system.

from oml.utils import ONNXPipeline, ONNXPipelineConfig

# Export to file
pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2")
pipeline.export2file("your_preconfig_file_name",output_dir=".")

Move the ONNX file to a directory on the database server, and create a directory on the file
system and in the database for the import.

mkdir -p /tmp/models
sqlplus / as sysdba
alter session set container=<name of pluggable database>;

Apply the necessary permissions and grants.

-- directory to store ONNX files for import
CREATE DIRECTORY ONNX_IMPORT AS '/tmp/models';
-- grant your OML user read and write permissions on the directory
GRANT READ, WRITE ON DIRECTORY ONNX_IMPORT to OMLUSER;
-- grant to allow user to import the model
GRANT CREATE MINING MODEL TO OMLUSER;

Use the DBMS_VECTOR.LOAD_ONNX_MODEL procedure to load the model in your OML user
schema. In this example, the procedure loads the ONNX model file named all-MiniLM-
L6.onnx from the ONNX_IMPORT directory into the database as a model named
ALL_MINILM_L6.

BEGIN
   DBMS_VECTOR.LOAD_ONNX_MODEL(
     directory => 'ONNX_IMPORT',
     file_name => 'all-MiniLM-L6-v2.onnx',
     model_name => 'ALL_MINILM_L6',
     metadata => JSON('{"function" : "embedding", "embeddingOutput" : 
"embedding", "input": {"input": ["DATA"]}}'));
END;

12. Export a preconfigured embedding model to the database. If using a database connection
to update to match your credentials and database environment.

Note:

To ensure step 12 works properly, complete steps 4 and 5 first.

# Import oml library and EmbeddingModel from oml.utils
import oml
from oml.utils import ONNXPipeline, ONNXPipelineConfig
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# Set embedded mode to false for Oracle Database on premises. This is not 
supported or required for Oracle Autonomous Database.
oml.core.methods.__embed__ = False

# Create a database connection. 

# Oracle Database on-premises
oml.connect("<user>", "<password>", port=<port number> host="<hostname>", 
service_name="<service name>")

# Oracle Autonomous Database
oml.connect(user="<user>", password="<password>", dsn="myadb_low")
pipeline = ONNXPipeline(model_name="sentence-transformers/all-MiniLM-L6-
v2")
em.export2db("ALL_MINILM_L6")

Query the model and its views, and you can generate embeddings from Python or SQL.

import oracledb
cr = oml.cursor()
data = cr.execute("select vector_embedding(ALL_MINILM_L6 using 'RES' as 
DATA)AS embedding from dual")
data.fetchall()

SELECT VECTOR_EMBEDDING(ALL_MINILM_L6 USING 'RES' as DATA) AS embedding;

13. Verify the model exists using SQL:

sqlplus $USER/pass@PDBNAME;

select model_name, algorithm, mining_function from user_mining_models 
where  model_name='ALL_MINILM_L6';

---------------------------------------------------------------------------
MODEL_NAME                 ALGORITHM                      MINING_FUNCTION
------------------------------ -------------------------------------------
ALL_MINILM_L6              ONNX                           EMBEDDING

Import ONNX Models into Oracle Database End-to-End Example
Learn to import a pretrained embedding model that is in ONNX format and generate vector
embeddings.

Follow the steps below to import a pretrained ONNX formatted embedding model into the
Oracle Database.

Prepare Your Data Dump Directory

Prepare your data dump directory and provide the necessary access and privileges to dmuser.

1. Choose from:
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a. If you already have a pretrained ONNX embedding model, store it in your working
folder.

b. If you do not have pretrained embedding model in ONNX format, perform the steps
listed in Convert Pretrained Models to ONNX Format.

2. Login to SQL*Plus as SYSDBA in your PDB.

CONN sys/<password>@pdb as sysdba;

3. Grant the DB_DEVELOPER_ROLE to dmuser.

GRANT DB_DEVELOPER_ROLE TO dmuser identified by <password>;

4. Grant CREATE MINING MODEL privilege to dmuser.

GRANT create mining model TO dmuser;

5. Set your working folder as the data dump directory (DM_DUMP) to load the ONNX embedding
model.

CREATE OR REPLACE DIRECTORY DM_DUMP as '<work directory path>';

6. Grant READ permissions on the DM_DUMP directory to dmuser.

GRANT READ ON DIRECTORY dm_dump TO dmuser;

7. Grant WRITE permissions on the DM_DUMP directory to dmuser.

GRANT WRITE ON DIRECTORY dm_dump TO dmuser;

8. Drop the model if it already exits.

exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

Import ONNX Model Into the Database

You created a data dump directory and now you load the ONNX model into the Database. Use
the DBMS_VECTOR.LOAD_ONNX_MODEL procedure to load the model. The
DBMS_VECTOR.LOAD_ONNX_MODEL procedure facilitates the process of importing ONNX format
model into the Oracle Database. In this example, the procedure loads an ONNX model file,
named my_embedding_model.onnx from the DM_DUMP directory, into the Database as doc_model,
specifying its use for embedding tasks.

1. Connect as dmuser.

CONN dmuser/<password>@<pdbname>;

2. Load the ONNX model into the Database.

If the ONNX model to be imported already includes an output tensor named
embeddingOutput and an input string tensor named data, JSON metadata is unnecessary.
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Embedding models converted from OML4Py follow this convention and can be imported
without the JSON metadata.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
  'DM_DUMP',
  'my_embedding_model.onnx',
  'doc_model');

Alternately, you can load the ONNX embedding model by specifying the JSON metadata.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
  'DM_DUMP',
  'my_embedding_model.onnx', 
  'doc_model', 
  JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": 
["DATA"]}}'));

The procedure LOAD_ONNX_MODEL declares these parameters:

• DM_DUMP: specifies the directory name of the data dump.

Note:

Ensure that the DM_DUMP directory is defined.

• my_embedding_model: is a VARCHAR2 type parameter that specifies the name of the ONNX
model.

• doc_model: This parameter is a user-specified name under which the model is stored in the
Oracle Database.

• The JSON metadata associated with the ONNX model is declared as:

"function" : "embedding": Indicates the function name for text embedding model.

"embeddingOutput" : "embedding": Specifies the output variable which contains the
embedding results.

• "input": {"input": ["DATA"]}: Specifies a JSON object ("input") that describes the
input expected by the model. It specifies that there is an input named "input", and its
value should be an array with one element, "DATA". This indicates that the model expects
a single string input to generate embeddings.

For more information about the LOAD_ONNX_MODEL procedure, see Oracle Database PL/SQL
Packages and Types Reference.

Alternatively, if your ONNX embedding model is loaded on cloud object storage, the
LOAD_ONNX_MODEL_CLOUD procedure can be used. For more information, see Oracle Database
PL/SQL Packages and Types Reference.

Query Model Statistics

You can view model attributes and learn about the model by querying machine learning
dictionary views and model detail views.
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Note:

DOC_MODEL is the user-specified name of the embedding text model.

1. Query USER_MINING_MODEL_ATTRIBUTES view.

SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;

To learn about USER_MINING_MODEL_ATTRIBUTES view, see 
USER_MINING_MODEL_ATTRIBUTES.

2. Query USER_MINING_MODELS view.

SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;

To learn about USER_MINING_MODELS view, see USER_MINING_MODELS.

3. Check model statistics by viewing the model detail views. Query the DM$VMDOC_MODEL view.

SELECT * FROM DM$VMDOC_MODEL ORDER BY NAME;

To learn about model details views for ONNX embedding models, see Model Details Views
for ONNX Models.

4. Query the DM$VPDOC_MODEL model detail view.

SELECT * FROM DM$VPDOC_MODEL ORDER BY NAME;

5. Query the DM$VJDOC_MODEL model detail view.

SELECT * FROM DM$VJDOC_MODEL;

Generate Embeddings

Apply the model and generate vector embeddings for your input. Here, the input is hello.

Generate vector embeddings using the VECTOR_EMBEDDING function.

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS 
embedding;

To learn about the VECTOR_EMBEDDING SQL function, see VECTOR_EMBEDDING. You can use
the UTL_TO_EMBEDDING function in the DBMS_VECTOR_CHAIN PL/SQL package to generate vector
embeddings generically through REST endpoints. To explore these functions, see the example 
Convert Text String to Embedding.
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Example: Importing a Pretrained ONNX Model to Oracle Database

The following presents a comprehensive step-by-step example of importing ONNX embedding
and generating vector embeddings.

conn sys/<password>@pdbname as sysdba
grant db_developer_role to dmuser identified by <password>;
grant create mining model to dmuser;
 
create or replace directory DM_DUMP as '<work directory path>';
grant read on directory dm_dump to dmuser;
grant write on directory dm_dump to dmuser;
>conn dmuser/<password>@<pdbname>;

–- Drop the model if it exits                                  
exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

-- Load Model
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
    'DM_DUMP', 
    'my_embedding_model.onnx', 
    'doc_model', 
    JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
/
 
--check the attributes view
set linesize 120
col model_name format a20
col algorithm_name format a20
col algorithm format a20
col attribute_name format a20
col attribute_type format a20
col data_type format a20 

SQL> SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;
 
 
OUTPUT:
 
MODEL_NAME           ATTRIBUTE_NAME       ATTRIBUTE_TYPE       DATA_TYPE  
VECTOR_INFO
-------------------- -------------------- -------------------- ---------- 
---------------
DOC_MODEL                INPUT_STRING         TEXT                 VARCHAR2
DOC_MODEL                ORA$ONNXTARGET       VECTOR               VECTOR     
VECTOR(128,FLOA
                                                                          T32)
 
 
 
SQL> SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
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FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;
 
OUTPUT:
MODEL_NAME           MINING_FUNCTION                ALGORITHM            
ALGORITHM_ MODEL_SIZE
-------------------- ------------------------------ -------------------- 
---------- ----------
DOC_MODEL                EMBEDDING                      ONNX                 
NATIVE       17762137
 
 
 
SQL> select * from DM$VMDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- 
----------------------------------------
Graph Description                        Graph combining g_8_torch_jit and 
torch_
                                         jit
                                         g_8_torch_jit
 
 
 
                                         torch_jit
 
 
Graph Name                               g_8_torch_jit_torch_jit
Input[0]                                 input:string[1]
Output[0]                                embedding:float32[?,128]
Producer Name                            onnx.compose.merge_models
Version                                  1
 
6 rows selected.
 
 
SQL> select * from DM$VPDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- 
----------------------------------------
batching                                 False
embeddingOutput                          embedding
 
 
SQL> select * from DM$VJDOC_MODEL;
 
OUTPUT:
METADATA
------------------------------------------------------------------------------
--
{"function":"embedding","embeddingOutput":"embedding","input":{"input":
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["DATA"]}}
 
 
 
--apply the model
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS 
embedding;
  
------------------------------------------------------------------------------
--
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.6930563
4E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E
-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-0
02,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576
E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-0
01,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-
002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

Oracle AI Vector Search SQL Scenario

To learn how you can chunk database-concepts23ai.pdf and oracle-ai-vector-search-users-
guide.pdf, generate vector embeddings, and perform similarity search using vector indexes,
see Quick Start SQL.

• Alternate Method to Import ONNX Models
Use the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure to import the model and
declare the input name. A PL/SQL helper block is used to facilitate the process of
importing the ONNX format model into the Oracle Database in the included example.

Alternate Method to Import ONNX Models
Use the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure to import the model and declare the
input name. A PL/SQL helper block is used to facilitate the process of importing the ONNX
format model into the Oracle Database in the included example.

Perform the following steps to import ONNX model into the Database using DBMS_DATA_MINING
PL/SQL package.

• Connect as dmuser.

CONN dmuser/<password>@<pdbname>;

• Run the following helper PL/SQL block:

DECLARE
    m_blob BLOB default empty_blob();
    m_src_loc BFILE ;
    BEGIN
    DBMS_LOB.createtemporary (m_blob, FALSE);
    m_src_loc := BFILENAME('DM_DUMP', 'my_embedding_model.onnx');
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    DBMS_LOB.fileopen (m_src_loc, DBMS_LOB.file_readonly);
    DBMS_LOB.loadfromfile (m_blob, m_src_loc, DBMS_LOB.getlength 
(m_src_loc));
    DBMS_LOB.CLOSE(m_src_loc);
    DBMS_DATA_MINING.import_onnx_model ('doc_model', m_blob, 
JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": 
{"input": ["DATA"]}}'));
    DBMS_LOB.freetemporary (m_blob);
    END;
    /

The code sets up a BLOB object and a BFILE locator, creates a temporary BLOB for storing
the my_embedding_model.onnx file from the DM_DUMP directory, and reads its contents into
the BLOB. It then closes the file and uses the content to import an ONNX model into the
database with specified metadata, before releasing the temporary BLOB resources.

The schema of the IMPORT_ONNX_MODEL procedure is as follows:
DBMS_DATA_MINING.IMPORT_ONNX_MODEL(model_data, model_name, metadata). This
procedure loads IMPORT_ONNX_MODEL from the DBMS_DATA_MINING package to import the ONNX
model into the Database using the name provided in model_name, the BLOB content in m_blob,
and the associated metadata.

• doc_model: This parameter is a user-specified name under which the imported model is
stored in the Oracle Database.

• m_blob: This is a model data in BLOB that holds the ONNX representation of the model.

• "function" : "embedding": Indicates the function name for text embedding model.

• "embeddingOutput" : "embedding": Specifies the output variable which contains the
embedding results.

• "input": {"input": ["DATA"]}: Specifies a JSON object ("input") that describes the
input expected by the model. It specifies that there is an input named "input", and its
value should be an array with one element, "DATA". This indicates that the model expects
a single string input to generate embeddings.

Alternately, the DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure can also accept a BLOB
argument representing an ONNX file stored and loaded from OCI Object Storage. The
following is an example to load an ONNX model stored in an OCI Object Storage.

DECLARE
  model_source BLOB := NULL;
BEGIN
  -- get BLOB holding onnx model 
  model_source := DBMS_CLOUD.GET_OBJECT(
    credential_name => 'myCredential',
    object_uri => 'https://objectstorage.us-phoenix -1.oraclecloud.com/' ||
      'n/namespace -string/b/bucketname/o/myONNXmodel.onnx'); 
 
  DBMS_DATA_MINING.IMPORT_ONNX_MODEL(
    "myonnxmodel",
    model_source,
    JSON('{ function : "embedding" })
  );
END;
/
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This PL/SQL block starts by initializing a model_source variable as a BLOB type, initially set to
NULL. It then retrieves an ONNX model from Oracle Cloud Object Storage using the
DBMS_CLOUD.GET_OBJECT procedure, specifying the credentials (OBJ_STORE_CRED) and the URI
of the model. The ONNX model resides in a specific bucket named bucketname in this case,
and is accessible through the provided URL. Then, the script loads the ONNX model into the
model_source BLOB. The DBMS_DATA_MINING.IMPORT_ONNX_MODEL procedure then imports this
model into the Oracle Database as myonnxmodel. During the import, a JSON metadata
specifies the model's function as embedding, for embedding operations.

See IMPORT_ONNX_MODEL Procedure and GET_OBJECT Procedure and Function to learn
about the PL/SQL procedure.

Example: Importing a Pretrained ONNX Model to Oracle Database

The following presents a comprehensive step-by-step example of importing ONNX embedding
and generating vector embeddings.

conn sys/<password>@pdb as sysdba
grant db_developer_role to dmuser identified by dmuser;
grant create mining model to dmuser;
 
create or replace directory DM_DUMP as '<work directory path>';
grant read on directory dm_dump to dmuser;
grant write on directory dm_dump to dmuser;
>conn dmuser/<password>@<pdbname>;

–- Drop the model if it exits                                  
exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

-- Load Model
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
    'DM_DUMP', 
    'my_embedding_model.onnx', 
    'doc_model', 
    JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
/
--Alternately, load the model
EXECUTE DBMS_DATA_MINING.IMPORT_ONNX_MODEL(
       'my_embedding_model.onnx',
    'doc_model', 
    JSON('{"function" : "embedding",
    "embeddingOutput" : "embedding",
    "input": {"input": ["DATA"]}}')
    );
 
--check the attributes view
set linesize 120
col model_name format a20
col algorithm_name format a20
col algorithm format a20
col attribute_name format a20
col attribute_type format a20
col data_type format a20 

SQL> SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
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WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;
 
 
OUTPUT:
 
MODEL_NAME           ATTRIBUTE_NAME       ATTRIBUTE_TYPE       DATA_TYPE  
VECTOR_INFO
-------------------- -------------------- -------------------- ---------- 
---------------
DOC_MODEL                INPUT_STRING         TEXT                 VARCHAR2
DOC_MODEL                ORA$ONNXTARGET       VECTOR               VECTOR     
VECTOR(128,FLOA
                                                                          T32)
 
 
 
SQL> SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;
 
OUTPUT:
MODEL_NAME           MINING_FUNCTION                ALGORITHM            
ALGORITHM_ MODEL_SIZE
-------------------- ------------------------------ -------------------- 
---------- ----------
DOC_MODEL                EMBEDDING                      ONNX                 
NATIVE       17762137
 
 
 
SQL> select * from DM$VMDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- 
----------------------------------------
Graph Description                        Graph combining g_8_torch_jit and 
torch_
                                         jit
                                         g_8_torch_jit
 
 
 
                                         torch_jit
 
 
Graph Name                               g_8_torch_jit_torch_jit
Input[0]                                 input:string[1]
Output[0]                                embedding:float32[?,128]
Producer Name                            onnx.compose.merge_models
Version                                  1
 
6 rows selected.
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SQL> select * from DM$VPDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- 
----------------------------------------
batching                                 False
embeddingOutput                          embedding
 
 
SQL> select * from DM$VJDOC_MODEL;
 
OUTPUT:
METADATA
------------------------------------------------------------------------------
--
{"function":"embedding","embeddingOutput":"embedding","input":{"input":
["DATA"]}}
 
 
 
--apply the model
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS 
embedding;
  
------------------------------------------------------------------------------
--
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.6930563
4E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E
-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-0
02,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576
E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-0
01,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-
002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

Access Third-Party Models for Vector Generation Leveraging
Third-Party REST APIs

You can access third-party vector embedding models to generate vector embeddings from your
data, outside the database by calling third-party REST APIs.

The Vector Utility PL/SQL packages DBMS_VECTOR and DBMS_VECTOR_CHAIN (outlined in 
Supplied Vector Utility PL/SQL Packages) provide the third-party REST APIs that let you
interact with external embedding models.
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You can remotely access third-party service providers, such as Cohere, Google AI, Hugging
Face, Generative AI, OpenAI, and Vertex AI. Alternatively, you can install Ollama on your local
host to access open LLMs, such as Llama 3, Phi 3, Mistral, and Gemma 2. All the supported
providers and corresponding REST operations allowed for each provider are listed in 
Supported Third-Party Provider Operations and Endpoints.

Review these high-level steps involved in generating embeddings by calling third-party REST
APIs:

1. Understand the terms of using third-party embedding models.

WARNING:

Certain features of the database may allow you to access services offered
separately by third-parties, for example, through the use of JSON specifications
that facilitate your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely
responsible for complying with any terms and conditions related to use of any
such third-party services. Notwithstanding any other terms and conditions related
to the third-party services, your use of such database features constitutes your
acceptance of that risk and express exclusion of Oracle's responsibility or liability
for any damages resulting from such access.

2. Configure your REST API connection.

By configuring your REST API connection, you enable Oracle Database to communicate
with the REST endpoint URL where you want to send requests to access data from the
third-party embedding service. The requested embedding service then processes the data
and returns a vector representation.

This involves the following tasks:

a. Create a user, set up storage, and grant necessary privileges.

Create a tablespace and a user, and then grant the DB_DEVELOPER_ROLE to that user.
This role assigns all basic roles and privileges that are necessary for a database
developer.

You can pass the input directly as a text string, or prepare a data dump directory to
upload your data for vector generation. Ensure to grant the user access to read and
write your data dump directory.

b. Grant the connect privilege to allow connection to the third-party host.

Grant the CONNECT privilege to the user for connecting to your third-party host. You use
the DBMS_NETWORK_ACL_ADMIN PL/SQL procedure (as described in 
DBMS_NETWORK_ACL_ADMIN) to specify the users and their privilege assignments
that can access external network services from within the database.

This procedure appends an access control entry (ACE) to the network access control
list (ACL) for the specified host. The ACE grants a privilege to a principal (user name),
which enables the user to connect to the external host that has been authorized in the
database's networking ACL. This increases security by controlling the users that can
connect to the specified hosts, and thus prevents unauthorized connections.

c. Set the proxy server, if configured.
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If you have configured a proxy server on your network, then you must specify the
proxy server's host name and port number. This helps you access external web
resources or embedding services by routing requests through your proxy server.

You use the UTL_HTTP.SET_PROXY PL/SQL procedure (as described in 
UTL_HTTP.SET_PROXY) to set the proxy server.

d. Set up credentials to enable access to the REST provider.

You require authentication credentials to enable access to your chosen third-party
service provider. A credential name holds authentication parameters, such as user
name, password, access token, private key, or fingerprint.

You use the credential helper procedures CREATE_CREDENTIAL and DROP_CREDENTIAL to
securely manage credentials in the database. These procedures are available with
both the DBMS_VECTOR and DBMS_VECTOR_CHAIN PL/SQL packages.

3. Generate vector embeddings.

You use chainable utility functions UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS to convert
input data to one or more vector embeddings. These APIs are available with both the
DBMS_VECTOR and the DBMS_VECTOR_CHAIN PL/SQL packages.

Determine which API to use:

• UTL_TO_EMBEDDING converts plain text (CLOB) or image (BLOB) to a single embedding
(VECTOR).

• UTL_TO_EMBEDDINGS converts an array of chunks (VECTOR_ARRAY_T) to an array of
embeddings (VECTOR_ARRAY_T).

For example, a typical DBMS_VECTOR.UTL_TO_EMBEDDING call specifies the REST provider,
credential name, REST endpoint URL for an embedding service, and embedding model
name parameters in a JSON object, as follows:

var params clob;
exec :params := '
{
 "provider": "cohere",
  "credential_name": "COHERE_CRED",
  "url": "https://api.cohere.example.com/embed",
  "model": "embed-model"
}';

select DBMS_VECTOR.UTL_TO_EMBEDDING('hello', json(:params)) from dual;

In this example, the input for generating embedding is hello.

Run end-to-end embedding examples:

To see how to apply these steps for performing various embedding use cases, you can run
some end-to-end example scenarios listed in Vector Generation Examples.

Related Topics

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.
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• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Vector Generation Examples
Run these end-to-end examples to see how you can generate vector embeddings, both within
and outside the database.

• Generate Embeddings
In these examples, you can see how to use the VECTOR_EMBEDDING SQL function or the
UTL_TO_EMBEDDING PL/SQL function to generate a vector embedding from input text strings
and images.

• Perform Chunking With Embedding
In these examples, you can see how to explore the VECTOR_CHUNKS SQL function along
with chainable utility PL/SQL functions to split large textual extracts and documents into
chunks and then represent each chunk as a vector embedding.

• Configure Chunking Parameters
Oracle AI Vector Search provides many parameters for chunking text data, such as SPLIT
[BY], OVERLAP, or NORMALIZE. In these examples, you can see how to configure these
parameters to define your own chunking specifications and strategies, so that you can
create meaningful chunks.

Generate Embeddings
In these examples, you can see how to use the VECTOR_EMBEDDING SQL function or the
UTL_TO_EMBEDDING PL/SQL function to generate a vector embedding from input text strings and
images.

• Convert Text String to Embedding Within Oracle Database
Perform a text-to-embedding transformation by accessing a vector embedding model
stored in the database.

• Convert Text String to BINARY Embedding Outside Oracle Database
Perform a text-to-BINARY-embedding transformation by accessing a third-party BINARY
vector embedding model.

• Convert Text String to Embedding Using Public REST Providers
Perform a text-to-embedding transformation, using publicly hosted third-party embedding
models by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI.

• Convert Text String to Embedding Using the Local REST Provider Ollama
Perform a text-to-embedding transformation by accessing open embedding models, using
the local host REST endpoint provider Ollama.

• Convert Image to Embedding Using Public REST Providers
Perform an image-to-embedding transformation by making a REST call to the third-party
service provider, Vertex AI. In this example, you can see how to vectorize both image and
text inputs using a multimodal embedding model and then query a vector space containing
vectors from both content types.

• Generate Multi-modal Embeddings Using CLIP
This section provides end-to-end instructions from installing the OML4Py client to
generating multi-modal embeddings using CLIP.
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• Vectorize Relational Tables Using OML Feature Extraction Algorithms

Convert Text String to Embedding Within Oracle Database
Perform a text-to-embedding transformation by accessing a vector embedding model stored in
the database.

You can download an embedding machine learning model, convert it into ONNX format (if not
already in ONNX format), and load the model into Oracle Database. You can then access that
model to vectorize your data that is used to populate a vector index. Note that you must use
the same embedding model on both the data to be indexed and the user's input query. In this
example, you can see how to vectorize a user's input query on the fly.

Here, you can call either the VECTOR_EMBEDDING SQL function or the UTL_TO_EMBEDDING
PL/SQL function (note the singular "embedding"). Both VECTOR_EMBEDDING and
UTL_TO_EMBEDDING directly return a VECTOR type (not an array).

To convert a user's input text string "hello" to a vector embedding, using an embedding model
in ONNX format:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password
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2. Call either VECTOR_EMBEDDING or UTL_TO_EMBEDDING.

a. Load your ONNX format embedding model into Oracle Database.

For detailed information on how to perform this step, see Import ONNX Models into
Oracle Database End-to-End Example.

b. Call VECTOR_EMBEDDING or UTL_TO_EMBEDDING. You can use UTL_TO_EMBEDDING either
from the DBMS_VECTOR or the DBMS_VECTOR_CHAIN package, depending on your use
case.

• VECTOR_EMBEDDING:

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) 
AS embedding;

• DBMS_VECTOR.UTL_TO_EMBEDDING:

var params clob;
exec :params := '{"provider":"database", "model":"doc_model"}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from 
dual;

Here, doc_model specifies the name under which your embedding model is stored in
the database.

The generated embedding appears as follows:

EMBEDDING
---------------------------------------------------------------------------
----------------------------------------------------------
[8.78423732E-003,-4.29633334E-002,-5.93001908E-003,-4.65480909E-002,2.14333
013E-002,6.53376281E-002,-5.93746938E-002,2.10403297E-002,
4.38376889E-002,5.22960871E-002,1.25104953E-002,6.49512559E-002,-9.26998071
E-003,-6.97442219E-002,-3.02916039E-002,-4.74979728E-003,
-1.08755399E-002,-4.63751052E-003,3.62781435E-002,-9.35919806E-002,-1.13934
642E-002,-5.74270077E-002,-1.36667723E-002,2.42995787E-002,
-6.96804151E-002,4.93822657E-002,1.01460628E-002,-1.56464987E-002,-2.394105
68E-002,-4.27529104E-002,-5.65665103E-002,-1.74160264E-002,
5.05326502E-002,4.31500375E-002,-2.6994409E-002,-1.72731467E-002,9.30535868
E-002,6.85951149E-004,5.61876409E-003,-9.0233935E-003,
-2.55788807E-002,-2.04174276E-002,3.74175981E-002,-1.67872179E-002,1.074793
04E-001,-6.64602639E-003,-7.65537247E-002,-9.71965566E-002,
-3.99636962E-002,-2.57076006E-002,-5.62455431E-002,-1.3583754E-001,3.459460
29E-002,1.85191762E-002,3.01524661E-002,-2.62163244E-002,
-4.05582506E-003,1.72979087E-002,-3.66434865E-002,-1.72491539E-002,3.952284
16E-002,-1.05518714E-001,-1.27463877E-001,1.42578809E-002

Related Topics

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.
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• VECTOR_EMBEDDING
Use VECTOR_EMBEDDING to generate a single vector embedding for different data types
using embedding or feature extraction machine learning models.

Convert Text String to BINARY Embedding Outside Oracle Database
Perform a text-to-BINARY-embedding transformation by accessing a third-party BINARY vector
embedding model.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To generate a vector embedding with "hello" as the input using Cohere ubinary embed-
english-v3.0 model:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000
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b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to allow connection to the host.

Grant connect privilege to docuser for connecting to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure. This example uses * to allow any host. However, you
can explicitly specify the host that you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

4. Set up your credentials for the REST provider (in this case, Cohere) and then call
UTL_TO_EMBEDDING.

a. Run DBMS_VECTOR.CREATE_CREDENTIAL to create and store a credential.

Cohere requires the following authentication parameter:

{ "access_token": "<access token>" }

Replace <access token> with your own values. You will later refer to this credential
name when declaring JSON parameters for the UTL_TO_EMBEDDING call.

EXEC DBMS_VECTOR.DROP_CREDENTIAL('COHERE_CRED');

DECLARE
  jo json_object_t;
BEGIN
  jo := json_object_t();
  jo.put('access_token', '<access token>');
  DBMS_VECTOR.CREATE_CREDENTIAL(
    credential_name   => 'COHERE_CRED',
    params            => json(jo.to_string));
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END;
/

b. Call DBMS_VECTOR.UTL_TO_EMBEDDING to generate the BINARY embedding.

Note:

For a list of all supported REST endpoints, see Supported Third-Party
Provider Operations and Endpoints.

var params clob;

BEGIN
:params := '
             {
              "provider": "cohere",
              "credential_name": "COHERE_CRED",
              "url": "https://api.cohere.ai/v1/embed",
              "model": "embed-english-v3.0",
              "input_type": "search_query",
              "embedding_types": ["ubinary"]
             }';
END;
/

SELECT TO_VECTOR(FROM_VECTOR(DBMS_VECTOR.UTL_TO_EMBEDDING('hello', 
JSON(:params))),*,BINARY);

The generated BINARY embedding appears as follows:

TO_VECTOR(FROM_VECTOR(DBMS_VECTOR.UTL_TO_EMBEDDING('HELLO',JSON(:PARAMS))),
*,BIN
---------------------------------------------------------------------------
-----
[137,218,245,195,211,132,169,63,43,22,12,93,112,93,85,208,145,27,76,245,99,
222,1
21,63,1,161,200,24,1,30,202,233,208,2,113,27,119,78,123,192,132,115,187,146
,58,1
36,40,63,221,52,68,241,53,88,20,99,85,248,114,177,100,248,100,158,94,53,57,
97,18
2,129,14,64,173,236,107,109,37,195,173,49,128,113,204,183,158,55,139,10,205
,65,4
0,53,243,247,134,63,125,133,55,230,129,64,165,103,102,46,251,164,213,139,22
7,225
,66,98,112,100,64,145,98,80,97,192,149,77,43,114,146,197]

Related Topics

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.
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Convert Text String to Embedding Using Public REST Providers
Perform a text-to-embedding transformation, using publicly hosted third-party embedding
models by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI.

You can use third-party embedding models to vectorize your data that is used to populate a
vector index. Note that you must use the same embedding model on both the data to be
indexed and the user's input query. In this example, you can see how to vectorize a user's
input query on the fly.

Here, you can call the chainable utility function UTL_TO_EMBEDDING (note the singular
"embedding") from either the DBMS_VECTOR or the DBMS_VECTOR_CHAIN package, depending on
your use case. This example uses the DBMS_VECTOR.UTL_TO_EMBEDDING API.

UTL_TO_EMBEDDING directly returns a VECTOR type (not an array).

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To convert a user's input text "hello" to a vector embedding, using a public third-party
embedding model:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000
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b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

4. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_EMBEDDING.

• Using Generative AI:

a. Run DBMS_VECTOR.CREATE_CREDENTIAL to create and store an OCI credential
(OCI_CRED).

Generative AI requires the following authentication parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
"fingerprint"     : "<fingerprint>" 
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_to_EMBEDDING call.
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Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector.drop_credential('OCI_CRED');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('user_ocid','<user ocid>');
  jo.put('tenancy_ocid','<tenancy ocid>');
  jo.put('compartment_ocid','<compartment ocid>');
  jo.put('private_key','<private key>');
  jo.put('fingerprint','<fingerprint>');
  dbms_vector.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

Replace all the authentication parameter values. For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  
jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');
  
jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');
  
jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
  jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');
  
jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');
  dbms_vector.create_credential(
    credential_name   => 'OCI_CRED',
    parameters        => json(jo.to_string));
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end;
/

b. Call DBMS_VECTOR.UTL_TO_EMBEDDING:

Here, the cohere.embed-english-v3.0 model is used. You can replace model with
your own value, as required.

Note:

For a list of all REST endpoint URLs and models that are supported to
use with Generative AI, see Supported Third-Party Provider Operations
and Endpoints.

-- select example

var params clob;
exec :params := '
{
  "provider": "ocigenai",
  "credential_name": "OCI_CRED",
  "url": "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/embedText",
  "model": "cohere.embed-english-v3.0",
  "batch_size": 10
}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from 
dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  v vector;
begin
  input := 'hello';
  params := '
{
  "provider": "ocigenai",
  "credential_name": "OCI_CRED",
  "url": "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/embedText",
  "model": "cohere.embed-english-v3.0",
  "batch_size": 10
}';

  v := dbms_vector.utl_to_embedding(input, json(params));
  dbms_output.put_line(vector_serialize(v));
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
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end;
/

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Run DBMS_VECTOR.CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_to_EMBEDDING call.

exec dbms_vector.drop_credential('<credential name>');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', '<access token>');
  dbms_vector.create_credential(
    credential_name   => '<credential name>',
    params            => json(jo.to_string));
end;
/

Replace the access_token and credential_name values. For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
  dbms_vector.create_credential(
    credential_name   => 'HF_CRED',
    params            => json(jo.to_string));
end;
/

b. Call DBMS_VECTOR.UTL_TO_EMBEDDING:

-- select example

var params clob;
exec :params := '
{
  "provider": "<REST provider>",
  "credential_name": "<credential name>",
  "url": "<REST endpoint URL for embedding service>",
  "model": "<embedding model name>"
}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from 
dual;
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-- PL/SQL example

declare
  input clob;
  params clob;
  v vector;
begin
  input := 'hello';

  params := '
{
  "provider": "<REST provider>",
  "credential_name": "<credential name>",
  "url": "<REST endpoint URL for embedding service>",
  "model": "<embedding model name>"
}';

  v := dbms_vector.utl_to_embedding(input, json(params));
  dbms_output.put_line(vector_serialize(v));
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Note:

For a complete list of all supported REST endpoint URLs, see Supported
Third-Party Provider Operations and Endpoints.

Replace provider, credential_name, url, and model with your own values.
Optionally, you can specify additional REST provider parameters. This is shown in
the following examples:

Cohere example:

{
  "provider"       : "cohere",
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.ai/v1/embed",
  "model"          : "embed-english-light-v2.0",
  "input_type"     : "search_query"
}

Google AI example:

{
  "provider"       : "googleai",
  "credential_name": "GOOGLEAI_CRED",
  "url"            : "https://generativelanguage.googleapis.com/
v1beta/models/",
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  "model"          : "embedding-001"
}

Hugging Face example:

{
  "provider"       : "huggingface",
  "credential_name": "HF_CRED",
  "url"            : "https://api-inference.huggingface.co/pipeline/
feature-extraction/",
  "model"          : "sentence-transformers/all-MiniLM-L6-v2"
}

OpenAI example:

{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/embeddings",
  "model"          : "text-embedding-3-small"
}

Vertex AI example:

{
  "provider"       : "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url"            : "https://LOCATION-aiplatform.googleapis.com/v1/
projects/PROJECT/locations/LOCATION/publishers/google/models/",
  "model"          : "textembedding-gecko:predict"
}

The generated embedding may appear as:

EMBEDDING
---------------------------------------------------------------------------
----------------------------------------------------------
[8.78423732E-003,-4.29633334E-002,-5.93001908E-003,-4.65480909E-002,2.14333
013E-002,6.53376281E-002,-5.93746938E-002,2.10403297E-002,
4.38376889E-002,5.22960871E-002,1.25104953E-002,6.49512559E-002,-9.26998071
E-003,-6.97442219E-002,-3.02916039E-002,-4.74979728E-003,
-1.08755399E-002,-4.63751052E-003,3.62781435E-002,-9.35919806E-002,-1.13934
642E-002,-5.74270077E-002,-1.36667723E-002,2.42995787E-002,
-6.96804151E-002,4.93822657E-002,1.01460628E-002,-1.56464987E-002,-2.394105
68E-002,-4.27529104E-002,-5.65665103E-002,-1.74160264E-002,
5.05326502E-002,4.31500375E-002,-2.6994409E-002,-1.72731467E-002,9.30535868
E-002,6.85951149E-004,5.61876409E-003,-9.0233935E-003,
-2.55788807E-002,-2.04174276E-002,3.74175981E-002,-1.67872179E-002,1.074793
04E-001,-6.64602639E-003,-7.65537247E-002,-9.71965566E-002,
-3.99636962E-002,-2.57076006E-002,-5.62455431E-002,-1.3583754E-001,3.459460
29E-002,1.85191762E-002,3.01524661E-002,-2.62163244E-002,
-4.05582506E-003,1.72979087E-002,-3.66434865E-002,-1.72491539E-002,3.952284
16E-002,-1.05518714E-001,-1.27463877E-001,1.42578809E-002
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This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Convert Text String to Embedding Using the Local REST Provider Ollama
Perform a text-to-embedding transformation by accessing open embedding models, using the
local host REST endpoint provider Ollama.

Ollama is a free and open-source command-line interface tool that allows you to run open
embedding models and LLMs locally and privately on your Linux, Windows, or macOS
systems. You can access Ollama as a service using SQL and PL/SQL commands.

You can call embedding models, such as all-minilm, mxbai-embed-large, or nomic-embed-text
to vectorize your data. Note that you must use the same embedding model on both the data to
be indexed and the user's input query. In this example, you can see how to vectorize a user's
input query on the fly.

Here, you can call the chainable utility function UTL_TO_EMBEDDING (note the singular
"embedding") from either the DBMS_VECTOR or the DBMS_VECTOR_CHAIN package, depending on
your use case. This example uses the DBMS_VECTOR.UTL_TO_EMBEDDING API.
UTL_TO_EMBEDDING directly returns a VECTOR type (not an array).

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To convert a user's input text string "hello" to a query vector, by calling a local embedding
model using Ollama:
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1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Install Ollama and run an embedding model locally.

a. Download and run the Ollama application from https://ollama.com/download.

You can either install Ollama as a service that runs in the background or as a
standalone binary with a manual install. For detailed installation-specific steps, see
Quick Start in the Ollama Documentation.

Note the following:

• The Ollama server needs to be able to connect to the internet so that it can
download the models. If you require a proxy server to access the internet,
remember to set the appropriate environment variables before running the Ollama
server. For example, to set for Linux:

-- set a proxy if you require one

export https_proxy=<proxy-hostname>:<proxy-port>
export http_proxy=<proxy-hostname>:<proxy-port>
export no_proxy=localhost,127.0.0.1,.example.com
export ftp_proxy=<proxy-hostname>:<proxy-port>

Chapter 4
Vector Generation Examples

4-62

https://ollama.com/download
https://github.com/ollama/ollama/tree/main/docs


• If you are running Ollama and the database on different machines, then on the
database machine, you must change the URL to refer to the host name or IP
address that is running Ollama instead of the local host.

• You may need to change your firewall settings on the machine that is running
Ollama to allow the port through.

b. If running Ollama as a standalone binary from a manual install, then start the server:

ollama serve

c. Run a model using the ollama pull <embedding_model_name> command.

For example, to call the all-minilm model:

ollama pull all-minilm

For detailed information on this step, see Ollama Readme.

d. Verify that Ollama is running locally by using a cURL command.

For example:

-- get embeddings 

curl http://localhost:11434/api/embeddings -d '{
  "model" : "all-minilm", 
  "prompt": "What is Oracle AI Vector Search?"}'

3. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

4. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

5. Call UTL_TO_EMBEDDING.

The Ollama service has a REST API endpoint for generating embedding. Specify the URL
and other configuration parameters in a JSON object.

var embed_ollama_params clob;
exec :embed_ollama_params := '{
     "provider": "ollama",
     "host"    : "local",
     "url"     : "http://localhost:11434/api/embeddings", 
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     "model"   : "all-minilm"
}';

select dbms_vector.utl_to_embedding('hello', json(:embed_ollama_params)) 
ollama_output from dual;

You can replace the url and model with your own values, as required.

Note:

For a complete list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

An excerpt from the generated embedding output is as follows:

OLLAMA_OUTPUT
---------------------------------------------------------------------------
-----
[-2.31221581E+000,-3.26045007E-001,2.48111725E-001,-1.65610778E+000,1.10871
601E+
000,-1.78519666E-001,-2.44365096E+000,-3.32534742E+000,-1.3771069E+000,1.88
42382
4E+000,1.26494539E+000,-2.05359578E+000,-1.78593469E+000,-3.16150457E-001,-
5.362
42545E-001,6.42113638E+000,-2.36518741E+000,2.21405053E+000,6.52316332E-001
,-7.8
1692028E-001,2.32031775E+000,5.31627655E-001,-5.02781868E-001,7.03743398E-0
01,5.
48391223E-001,-3.16579014E-001,5.28999329E+000,1.63369191E+000,1.34206653E-
001,9
.54429448E-001,-1.94197679E+000,2.39797616E+000,3.5270077E-001,-1.6536833E+
000,-
5.74707508E-001,1.60994816E+000,3.80332375E+000,-6.30351126E-001,-1.5865227
E+000
,-2.48650503E+000,-1.42142653E+000,-2.79453158E+000,1.76355612E+000,-2.4869
0337E
-001,1.5521245E+000,-1.95240334E-001,1.42441893E+000,-3.57098508E+000,4.020
83158
E+000,-2.38530707E+000,2.34579134E+000,-2.79158998E+000,-5.92314243E-001,-9
.7153

OLLAMA_OUTPUT
---------------------------------------------------------------------------
-----
9557E-001,1.6514441E-002,1.03710043E+000,1.96799666E-001,-2.18394065E+000,-
2.786
71598E+000,-1.1549623E+000,1.92903787E-001,7.72498465E+000,-1.63462329E+000
,3.33
839393E+000,-7.17389703E-001,-3.99817854E-001,7.7395606E-001,6.43829286E-00
1,1.8
5182285E+000,2.95272923E+000,-8.72635692E-002,1.77895337E-001,-1.19716954E+
000,9
.43063736E-001,1.51703429E+000,-7.93301344E-001,1.92319798E+000,3.33290434E

Chapter 4
Vector Generation Examples

4-64



+000,
-1.29852867E+000,2.02961493E+000,-4.35824203E+000,1.30186975E+000,-1.097941
4E+00
0,-7.07521975E-001,-4.50183332E-001,3.77224755E+000,-2.49138021E+000,-1.125
75901
E+000,1.15370192E-001,1.66767395E+000,3.52229095E+000,-3.78049397E+000,-6.1
71851
75E-001,1.71992481E+000,2.33226371E+000,-3.35983014E+000,-3.78417182E+000,3
.8380
127E+000,2.59293962E+000,-1.33574629E+000,-1.76218402E+000,3.53816301E-001,
-1.80
47899E+000,9.85167921E-001,1.93026745E+000,2.15959966E-001,9.94020045E-001,
6.189

Related Topics

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Convert Image to Embedding Using Public REST Providers
Perform an image-to-embedding transformation by making a REST call to the third-party
service provider, Vertex AI. In this example, you can see how to vectorize both image and text
inputs using a multimodal embedding model and then query a vector space containing vectors
from both content types.

You can directly generate a vector embedding based on an image, which can be used for
classifying or detecting images, comparing large datasets of images, or for performing a more
effective similarity search on documents that include images. To get image embeddings, you
can use any image embedding model or multimodal embedding model supported by Vertex AI.
By analyzing an image, a model generates image embedding that encodes each visual
element of the image (shape, color, pattern, texture, action, or object) as a vector
representation.

Multimodal embedding is a technique that vectorizes data from different modalities such as text
and images. This lets you use the same embedding model to generate embeddings for both
types of content. By doing so, the resulting embeddings are compatible and situated in the
same vector space, which allows for effective comparison between the two modalities (text and
image) during similarity searches.

Here, you can use the UTL_TO_EMBEDDING function from either the DBMS_VECTOR or the
DBMS_VECTOR_CHAIN package.
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WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To find a bird that is similar to a given image or text input, using similarity search:

1. Connect as a local user and prepare your data dump directory.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;
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c. Create a local directory (VEC_DUMP) to store image files. Grant necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Connect as the local user (docuser):

conn docuser/password

2. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

4. Set up credentials for Vertex AI.

Vertex AI requires the following authentication parameter:

{ "access_token": "<access token>" }

begin
  DBMS_VECTOR_CHAIN.DROP_CREDENTIAL(credential_name  => 'VERTEXAI_CRED');
exception
  when others then null;
end;
/

Here, replace <access token> with your own value:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', '<access token>');
  DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL(
    credential_name   =>  'VERTEXAI_CRED',
    params            => json(jo.to_string));
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end;
/

5. Create a relational table (docs) and insert some images in it.

You will later compare your query image to this database of images.

Here, you first create a docs table with id and content columns. Then, using the to_blob
function, you convert the contents of your image files into BLOB for storing into content
(blob column), reading the files from the VEC_DUMP directory.

drop table docs;

create table docs(id number primary key, content blob);

insert into docs(id, content)
values(1, to_blob(bfilename('VEC_DUMP', 'cat.jpg')));
insert into docs (id, content)
values(2, to_blob(bfilename('VEC_DUMP', 'eagle.jpg')));

6. Get image embedding for your query image (parrots.jpg):

First, upload your query image to the VEC_DUMP directory.

Then, use UTL_TO_EMBEDDING to vectorize that image. Here, the input is specified as
parrots.jpg (with a pointer to the VEC_DUMP directory), the modality is specified as image,
and the provider-specific embedding parameters for Vertex AI are passed as JSON.

Note:

For a list of all supported REST endpoints, see Supported Third-Party Provider
Operations and Endpoints.

-- declare embedding parameters

var params clob;

begin
  :params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/
locations/LOCATION/publishers/google/models/",
  "model": "multimodalembedding:predict"
}';
end;
/

-- get image embedding: PL/SQL example

declare
  v vector;
  output clob;
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begin
  v := dbms_vector_chain.utl_to_embedding(
    to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));
  output := vector_serialize(v);
  dbms_output.put_line('vector data=' || dbms_lob.substr(output, 100) || 
'...');
end;
/

-- get image embedding: select example

select dbms_vector_chain.utl_to_embedding(
  to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));

7. Search using an image input. Here, input is the generated embedding for your query image
(parrots.jpg):

select docs.id, vector_distance(
  dbms_vector_chain.utl_to_embedding(to_blob(bfilename('VEC_DUMP', 
'parrots.jpg')), 'image', json(:params)),
  dbms_vector_chain.utl_to_embedding(docs.content, 'image', json(:params)),
  cosine) dist
from docs
order by dist asc;

An output appears as:

ID       DIST                                                           
-------  
-----------                                                           
2        
5.847E-001                                                           
1        6.295E-001

This query shows that ID 2 (eagle.jpg) is the closest match to the given image input,
while ID 1 (cat.jpg) is less similar.

8. Search using a text input. Here, input is the image's description as "bald eagle":

select docs.id, vector_distance(
  dbms_vector_chain.utl_to_embedding('bald eagle', json(:params)),
  dbms_vector_chain.utl_to_embedding(docs.content, 'image', json(:params)),
  cosine) dist
from docs
order by dist asc;

An output appears as:

ID      DIST
------- -----------
2       8.449E-001
1       9.87E-001
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This query also implies that ID 2 is the closest match to your text input, while ID 1 is less
similar. However, both values are lower than those in the previous query where you
specified the image as input.

Related Topics

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING and
DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDINGS chainable utility functions to generate one or
more vector embeddings from textual documents and images.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Generate Multi-modal Embeddings Using CLIP
This section provides end-to-end instructions from installing the OML4Py client to generating
multi-modal embeddings using CLIP.

These instructions assume you have configured your Oracle Linux 8 repo in /etc/
yum.repos.d, configured a Wallet if using an Autonomous Database, and set up a proxy if
needed.

1. Install Python:

sudo yum install libffi-devel openssl openssl-devel tk-devel xz-devel zlib-
devel bzip2-devel readline-devel libuuid-devel ncurses-devel libaio
mkdir -p $HOME/python
wget https://www.python.org/ftp/python/3.12.3/Python-3.12.3.tgz
tar -xvzf Python-3.12.3.tgz --strip-components=1 -C $HOME/python
cd $HOME/python
./configure --prefix=$HOME/python
make clean; make
make altinstall

2. Set variables PYTHONHOME, PATH, and LD_LIBRARY_PATH:

export PYTHONHOME=$HOME/python
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH

3. Create symlink for python3 and pip3:

cd $HOME/python/bin
ln -s python3.12 python3
ln -s pip3.12 pip3
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4. Install Oracle Instant client if you will be exporting embedded models to the database from
Python. If you will be exporting to a file, skip steps 4 and 5 and see the note under
environment variables in step 6:

cd $HOME
wget https://download.oracle.com/otn_software/linux/instantclient/2340000/
instantclient-basic-linux.x64-23.4.0.24.05.zip
unzip instantclient-basic-linux.x64-23.4.0.24.05.zip

5. Set variable LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$HOME/instantclient_23_4:$LD_LIBRARY_PATH

6. Create an environment file, for example, env.sh, that defines the Python and Oracle
Instant client environment variables and source these environment variables before each
OML4Py client session. Alternatively, add the environment variable definitions to .bashrc
so they are defined when the user logs into their Linux machine.

# Environment variables for Python
export PYTHONHOME=$HOME/python
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH

Note:

Environment variable for Oracle Instant Client - only if the Oracle Instant Client is
installed for exporting models to the database.
export LD_LIBRARY_PATH=$HOME/instantclient_23_4:$LD_LIBRARY_PATH
.

7. Create a file named requirements.txt that contains the required third-party packages listed
below.

--extra-index-url https://download.pytorch.org/whl/cpu
pandas==2.1.1
setuptools==68.0.0
scipy==1.12.0
matplotlib==3.8.4
oracledb==2.2.0
scikit-learn==1.4.1.post1
numpy==1.26.4
onnxruntime==1.17.0
onnxruntime-extensions==0.10.1
onnx==1.16.0
torch==2.2.0+cpu
transformers==4.38.1
sentencepiece==0.2.0

8. Upgrade pip3 and install the packages listed in requirements.txt.

pip3 install --upgrade pip
pip3 install -r requirements.txt
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9. Install OML4Py client. Download OML4Py 2.0.1 client from OML4Py download page and
upload it to the Linux machine.

unzip oml4py-client-linux-x86_64-2.0.1.zip
pip3 install client/oml-2.0-cp312-cp312-linux_x86_64.whl

10. Get a list of all preconfigured models. Start Python and import ONNXPipelineConfig from
oml.utils.

python3

from oml.utils import ONNXPipelineConfig

ONNXPipelineConfig.show_preconfigured()

['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-MiniLM-L6-v2',
'sentence-transformers/multi-qa-MiniLM-L6-cos-v1',
'sentence-transformers/distiluse-base-multilingual-cased-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'BAAI/bge-small-en-v1.5',
'BAAI/bge-base-en-v1.5',
'taylorAI/bge-micro-v2',
'intfloat/e5-small-v2',
'intfloat/e5-base-v2',
'thenlper/gte-base',
'thenlper/gte-small',
'TaylorAI/gte-tiny',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'intfloat/multilingual-e5-base',
'intfloat/multilingual-e5-small',
'sentence-transformers/stsb-xlm-r-multilingual',
'Snowflake/snowflake-arctic-embed-xs',
'Snowflake/snowflake-arctic-embed-s',
'Snowflake/snowflake-arctic-embed-m',
'mixedbread-ai/mxbai-embed-large-v1',
'openai/clip-vit-large-patch14',
'google/vit-base-patch16-224',
'microsoft/resnet-18',
'microsoft/resnet-50',
'WinKawaks/vit-tiny-patch16-224',
'Falconsai/nsfw_image_detection',
'WinKawaks/vit-small-patch16-224',
'nateraw/vit-age-classifier',
'rizvandwiki/gender-classification',
'AdamCodd/vit-base-nsfw-detector',
'trpakov/vit-face-expression',
'BAAI/bge-reranker-base']

11. Use OML4Py to load a multi-modal model on the database.

• To use an alternate method other than OML4Py, skip this step and proceed to step 12.

Export a preconfigured embedding model to the database. Import the oml library and
import ONNXPipeline and ONNXPipelineConfig from oml.utils. This exports the ONNX-
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format model to your local file system. In the following steps, replace the placeholders with
your own credentials.

import oml
from oml.utils import ONNXPipeline, ONNXPipelineConfig

If your Oracle Database is on premises, set embedded mode to false. This step is not
supported or required for Oracle Autonomous Database.

oml.core.methods.__embed__ = False

Create a database connection.

• Using Oracle Database on premises:

oml.connect("<user>", "<password>", port=<port number> 
host="<hostname>", 
service_name="<service name>")

pipeline = ONNXPipeline(model_name="openai/clip-vit-large-patch14")
pipeline.export2db("CLIP")

• Using Oracle Autonomous Database:

oml.connect(user="<user>", password="<password>", dsn="myadb_low")

pipeline = ONNXPipeline(model_name="openai/clip-vit-large-patch14")
pipeline.export2db("CLIP")

Once this step is complete, there will be two models loaded on the database called
"CLIP_TXT" and "CLIP_IMG".

12. Export a preconfigured embedding model to a local file.

This exports the ONNX-format model to your local file system:

# Export to file
pipeline = ONNXPipeline(model_name="openai/clip-vit-large-patch14")
pipeline.export2file("clip",output_dir="/tmp/models")

Move the ONNX file to a directory on the database server and create a directory on the file
system and in the database for the import.

mkdir -p /tmp/models
sqlplus / as sysdba
alter session set container=<name of pluggable database>;

Apply the necessary permissions and grants.

-- directory to store ONNX files for import
CREATE DIRECTORY ONNX_IMPORT AS '/tmp/models';
-- grant your OML user read and write permissions on the directory
GRANT READ, WRITE ON DIRECTORY ONNX_IMPORT to OMLUSER;
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-- grant to allow user to import the model
GRANT CREATE MINING MODEL TO OMLUSER;

Use the DBMS_VECTOR.LOAD_ONNX_MODEL procedure to load the models in your OML user
schema. In this example, the procedure loads the ONNX model files named
clip_txt.onnx and clip_img.onnx from the ONNX_IMPORT directory into the database as
models named CLIP_TXT and CLIP_IMG, respectively.

BEGIN
    DBMS_VECTOR.LOAD_ONNX_MODEL(
    directory => 'ONNX_IMPORT',
    file_name => 'clip_txt.onnx',
    model_name => 'CLIP_TXT',
    metadata => JSON('{"function" : "embedding", "embeddingOutput" : 
"embedding", "input": {"input": ["DATA"]}}'));
END;
BEGIN
    DBMS_VECTOR.LOAD_ONNX_MODEL(
    directory => 'ONNX_IMPORT',
    file_name => 'clip_img.onnx',
    model_name => 'CLIP_IMG',
    metadata => JSON('{"function" : "embedding", "embeddingOutput" : 
"embedding", "input": {"input": ["DATA"]}}'));
END;

13. Verify the models exist using SQL.

sqlplus $USER/pass@PDBNAME;

SELECT model_name, algorithm, mining_function
FROM user_mining_models
WHERE model_name='CLIP_TXT' OR model_name='CLIP_IMG';

--------------------------------------------------------
MODEL_NAME          ALGORITHM            MINING_FUNCTION
--------------------------------------------------------
CLIP_TXT            ONNX                 EMBEDDING
CLIP_IMG            ONNX                 EMBEDDING

14. Generate embeddings with exported models using Python.

from oracledb import DB_TYPE_BLOB
with open('cat.jpg', 'rb') as f:
    img = f.read()
cr = oml.cursor()
blob = cr. var(DB_TYPE_BLOB)
blob.setvalue(0, img)
data = cr.execute("select vector_embedding(CLIP_TXT using 'RES' as DATA) 
from dual")
txt_embed = data.fetchall()
data = cr.execute("select vector_embedding(CLIP_IMG using to_blob(:1) as 
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DATA) from dual", [blob])
img_embed = data.fetchall()

Calculate similarity between an image and text using Python:

from oracledb import DB_TYPE_BLOB
with open('cat.jpg', 'rb') as f:
    img = f.read()
cr = oml.cursor()
blob = cr.var(DB_TYPE_BLOB)
blob.setvalue(0, img)
data = cr.execute("""select 1-vector_distance(vector_embedding(CLIP_TXT 
using 'RES' as DATA), 
                    vector_embedding(CLIP_IMG using to_blob(:1) as DATA)) 
from dual""", [blob])
data.fetchall()

Result:

[(0.1637756726800217,)]

Generate embeddings with the exported models using SQL:

• SELECT VECTOR_EMBEDDING(CLIP_TXT USING 'RES' as DATA) AS embedding;

An example of results are shown in the following excerpt:

EMBEDDING
------------------------------------------------------------------------
--------
[2.86132172E-002,-5.59654366E-003,8.66401661E-003,-1.4299524E-002,1.0201
2949E-00
2,6.00034464E-003,1.86244473E-002,-7.81036681E-003, ...

• SELECT VECTOR_EMBEDDING(CLIP_IMG USING TO_BLOB(BFILENAME('ONNX_IMPORT', 
'cat.jpg')) as DATA) AS embedding;

An example of results are shown in the following excerpt:

EMBEDDING
------------------------------------------------------------------------
--------
[-2.2028232E-002,1.29058748E-003,-2.0222881E-004,4.58140159E-003,1.98919
605E-002
,-9.51210782E-003,8.22519697E-003,1.06151737E-002, ...

Calculate the similarity between an image and text using SQL:

SELECT 1-VECTOR_DISTANCE(VECTOR_EMBEDDING(
            CLIP_IMG USING TO_BLOB(BFILENAME('ONNX_IMPORT', 'cat.jpg')) as 
DATA),
            VECTOR_EMBEDDING(CLIP_TXT USING 'RES' as DATA)) AS similarity;
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Example result:

SIMILARITY
----------
1.638E-001

Vectorize Relational Tables Using OML Feature Extraction Algorithms

This example shows you how to use OML's Feature Extraction algorithms in conjunction with
the VECTOR_EMBEDDING() operator to vectorize sets of relational data, build similarity indexes,
and perform similarity searches on the resulting vectors.

Feature Extraction algorithms help in extracting the most informative features/columns from the
data and aim to reduce the dimensionality of large data sets by identifying the principal
components that capture the most variance in the data. This reduction simplifies the data set
while retaining the most important information, making it easier to analyze correlations and
redundancies in the data.

The Principal Component Analysis (PCA) algorithm, a widely used dimensionality reduction
technique in machine learning, is used in this tutorial.
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Note:

This example uses customer bank marketing data available at https://
archive.ics.uci.edu/dataset/222/bank+marketing.

The relational data table includes a mix of numeric and categorical columns. It has
more than 4000 records.

SELECT column_name, data_type
FROM user_tab_columns
WHERE table_name = 'BANK'
ORDER BY data_type, column_name;

Output:

COLUMN_NAME          DATA_TYPE
-------------------- --------------------
AGE                  NUMBER
CAMPAIGN             NUMBER
CONS_CONF_IDX        NUMBER
CONS_PRICE_IDX       NUMBER
DURATION             NUMBER
EMP_VAR_RATE         NUMBER
EURIBOR3M            NUMBER
ID                   NUMBER
NR_EMPLOYED          NUMBER
PDAYS                NUMBER
PREVIOUS             NUMBER
CONTACT              VARCHAR2
CREDIT_DEFAULT       VARCHAR2
DAY_OF_WEEK          VARCHAR2
EDUCATION            VARCHAR2
HOUSING              VARCHAR2
JOB                  VARCHAR2
LOAN                 VARCHAR2
MARITAL              VARCHAR2
MONTH                VARCHAR2
POUTCOME             VARCHAR2
Y                    VARCHAR2

To perform a similarity search, you need to vectorize the relational data. To do so, you can first
use the OML Feature Extraction algorithm to project the data onto a more compact numeric
space. In this example, you configure the SVD algorithm to perform a Principal Component
Analysis (PCA) projection of the original data table. The number of features/columns (5 in this
case) is specified in the setting table. The input number determines the number of principal
features or columns that will be retained after the dimensionality reduction process. Each of
these columns represent a direction in the feature space along which the data varies the most.

Because you need to use the DBMS_DATA_MINING package to create the model, you need the
CREATE MINING MODEL privilege in addition to the other privileges relevant to vector indexes
and similarity search. For more information about the CREATE MINING MODEL privilege, see 
Oracle Machine Learning for SQL User’s Guide.
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1. Create a setting table, insert values, and then create a model.

Use the DBMS_DATA_MINING package to create a model, using mod_sett as the setting
table:

CREATE TABLE mod_sett(
  setting_name  VARCHAR2(30),
  setting_value VARCHAR2(30)
);

BEGIN
  INSERT INTO mod_sett (setting_name, setting_value) VALUES 
        (dbms_data_mining.algo_name, 
dbms_data_mining.algo_singular_value_decomp);
  INSERT INTO mod_sett (setting_name, setting_value) VALUES
        (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
  INSERT INTO mod_sett (setting_name, setting_value) VALUES
        (dbms_data_mining.svds_scoring_mode, 
dbms_data_mining.svds_scoring_pca);
  INSERT INTO mod_sett (setting_name, setting_value) VALUES
        (dbms_data_mining.feat_num_features, 5);
  commit;
END;
/

BEGIN
  DBMS_DATA_MINING.CREATE_MODEL(
    model_name          => 'pcamod',
    mining_function     => dbms_data_mining.feature_extraction,
    data_table_name     => 'bank',
    case_id_column_name => 'id',
    settings_table_name => 'mod_sett');  
END;
/

2. Use the VECTOR_EMBEDDING() function to output the SVD projection results as vectors.

The dimension of the vector column is the same as the number of features in the PCA
model and the value of the vector represents the PCA projection results of the original row
data.

Note:

USING * results in the use of all the relevant features present in the input row.

SELECT id, vector_embedding(pcamod USING *) embedding
FROM bank
WHERE id=10000;
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Output:

            ID      EMBEDDING
--------------     --------------------------------------------------
        10000      [-2.3551013972411354E+002,2.8160084506788273E+001,
                     5.2821278275005774E+001,-1.8960922352439308E-002,
                    -2.5441143639048378E+000]

3. Create a table to hold the vector output results for all the data records.

This represents a vectorization of your original relational data for the top-5 most important
columns.

CREATE TABLE pca_output AS
(SELECT id, vector_embedding(pcamod USING *) embedding
 FROM bank);

4. Build a vector index based on the vector table.

For example, you can build an IVF index with cosine distance:

CREATE VECTOR INDEX my_ivf_idx ON pca_output(embedding) 
ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE WITH TARGET ACCURACY 95;

5. Perform a similarity search using the my_ivf_idx index.

In this example, you search for the top-3 results that are closest to id=10000 based on the
cosine distance and join the vector table with the original bank table to retrieve the most
impactful attributes from the original table. To identify the most impactful columns for this
row, use the FEATURE_DETAILS() function.

SELECT feature_details(pcamod, 5 USING *) features
FROM bank
WHERE id=10000;

Output:

FEATURES
---------------------------------------------------------------------------
--------------------
<Details algorithm="Singular Value Decomposition" feature="5">
<Attribute name="PDAYS" actualValue="999" weight=".041" rank="1"/>
<Attribute name="EURIBOR3M" actualValue="4.959" weight=".028" rank="2"/>
<Attribute name="CONTACT" actualValue="telephone" weight=".016" rank="3"/>
<Attribute name="EMP_VAR_RATE" actualValue="1.4" weight=".014" rank="4"/>
<Attribute name="DAY_OF_WEEK" actualValue="wed" weight=".002" rank="5"/>
</Details>

Join the original data table to retrieve the most impactful information:

SELECT p.id id, b.PDAYS PDAYS, b.EURIBOR3M EURIBOR3M, b.CONTACT CONTACT, 
    b.EMP_VAR_RATE EMP_VAR_RATE, b.DAY_OF_WEEK DAY_OF_WEEK
FROM pca_output p, bank b
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WHERE p.id <> 10000 AND p.id=b.id
ORDER BY VECTOR_DISTANCE(embedding, (select embedding from pca_output 
where id=10000), COSINE)
FETCH FIRST 3 ROWS ONLY;

Output:

        ID      PDAYS  EURIBOR3M   CONTACT EMP_VAR_RATE DAY_OF_WEEK
---------- ---------- ---------- --------- ------------ -----------
      9416        999      4.967 telephone          1.4         fri
     13485        999      4.963 telephone          1.4         thu
      9800        999      4.959 telephone          1.4         wed

The results of the previous query illustrate that the closest 3 records are very similar. In
contrast, the distributions of these features across the data set are dispersed as shown in
the following queries:

SELECT avg(PDAYS) avg, stddev(PDAYS) std, min(PDAYS) min, max(PDAYS) max
FROM bank;

Output:

       AVG        STD        MIN        MAX
---------- ---------- ---------- ----------
962.475454 186.910907          0        999

SELECT avg(EURIBOR3M) avg, stddev(EURIBOR3M) std, min(EURIBOR3M) min, 
max(EURIBOR3M) max
FROM bank;

Output:

       AVG       STD        MIN        MAX
---------- --------- ---------- ----------

3.62129081 1.7344474       .634      5.045

This tutorial demonstrates how you can vectorize relational data very efficiently and
achieve significant compression while maintaining a high quality similarity search.

See Also:

Oracle Machine Learning for SQL Concepts for more information about Feature
Extraction algorithms

Chapter 4
Vector Generation Examples

4-80



Perform Chunking With Embedding
In these examples, you can see how to explore the VECTOR_CHUNKS SQL function along with
chainable utility PL/SQL functions to split large textual extracts and documents into chunks and
then represent each chunk as a vector embedding.

To embed large textual data, you first need to prepare it in a format that can be processed by
embedding models. You first transform the data into plain text, split the resulting text into
smaller chunks of text, and then transform each chunk into a vector. This is done to comply
with the input limits set by embedding models. Chunks can be words (to capture specific words
or word pieces), sentences (to capture a specific context), or paragraphs (to capture broader
themes).

• Convert Text to Chunks With Custom Chunking Specifications
A chunked output, especially for long and complex documents, sometimes loses
contextual meaning or coherence with its parent content. In this example, you can see how
to refine your chunks by applying custom chunking specifications.

• Convert File to Text to Chunks to Embeddings Within Oracle Database
First convert a PDF file to text, split the text into chunks, and then create vector
embeddings on each chunk by accessing a vector embedding model stored in the
database.

• Convert File to Embeddings Within Oracle Database
Directly extract vector embeddings from a PDF document, using a single-step statement,
by accessing a vector embedding model stored in the database.

• Generate and Use Embeddings for an End-to-End Search
First generate vector embeddings from textual content by using a vector embedding model
stored in the database, and then populate and query a vector index. At query time, you
also vectorize the query criteria on the fly.

Convert Text to Chunks With Custom Chunking Specifications
A chunked output, especially for long and complex documents, sometimes loses contextual
meaning or coherence with its parent content. In this example, you can see how to refine your
chunks by applying custom chunking specifications.

Here, you use the VECTOR_CHUNKS SQL function or the UTL_TO_CHUNKS() PL/SQL function from
the DBMS_VECTOR_CHAIN package.

Note:

This example shows how to apply some of the custom chunking parameters. To
further explore all the supported chunking parameters with more detailed examples,
see Explore Chunking Techniques and Examples.

1. Connect to Oracle Database as a local user.
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a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local test user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Create a relational table (documentation_tab) to store unstructured text chunks in it:

DROP TABLE IF EXISTS documentation_tab; 

CREATE TABLE documentation_tab (
    id NUMBER, 
    text VARCHAR2(2000));

INSERT INTO documentation_tab VALUES(1,
'Oracle AI Vector Search stores and indexes vector embeddings'||
' for fast retrieval and similarity search.'||CHR(10)||CHR(10)||
'    About Oracle AI Vector Search'||CHR(10)||
'    Vector Indexes are a new classification of specialized indexes'||
' that are designed for Artificial Intelligence (AI) workloads that 
allow'||
' you to query data based on semantics, rather than keywords.'||CHR(10)||
CHR(10)||
'    Why Use Oracle AI Vector Search?'||CHR(10)||
' The biggest benefit of Oracle AI Vector Search is that semantic search'||
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' on unstructured data can be combined with relational search on 
business'||
' data in one single system.'||CHR(10));

COMMIT;

SET LINESIZE 1000;
SET PAGESIZE 200;
COLUMN doc FORMAT 999;
COLUMN id  FORMAT 999;
COLUMN pos FORMAT 999;
COLUMN siz FORMAT 999;
COLUMN txt FORMAT a60;
COLUMN data FORMAT a80;

3. Call the VECTOR_CHUNKS SQL function and specify the following custom chunking
parameters. Setting the NORMALIZE parameter to all ensures that the formatting of the
results is easier to read, which is especially helpful when the data includes PDF
documents:

SELECT D.id doc, C.chunk_offset pos, C.chunk_length siz, C.chunk_text txt
FROM documentation_tab D, VECTOR_CHUNKS(D.text 
    BY words
    MAX 50
    OVERLAP 0
    SPLIT BY recursively
    LANGUAGE american
    NORMALIZE all) C;

To call the same operation using the UTL_TO_CHUNKS function from the DBMS_VECTOR_CHAIN
package, run:

SELECT D.id doc,
    JSON_VALUE(C.column_value, '$.chunk_id' RETURNING NUMBER) AS id,
    JSON_VALUE(C.column_value, '$.chunk_offset' RETURNING NUMBER) AS pos,
    JSON_VALUE(C.column_value, '$.chunk_length' RETURNING NUMBER) AS siz,
    JSON_VALUE(C.column_value, '$.chunk_data') AS txt
FROM documentation_tab D,
   dbms_vector_chain.utl_to_chunks(D.text,
   JSON('{"by":"words",
          "max":"50",
          "overlap":"0",
          "split":"recursively",
          "language":"american",
          "normalize":"all"}')) C;

This returns a set of three chunks, which are split by words recursively using blank lines,
new lines, and spaces:

DOC  POS  SIZ  TXT
---- ---- ---- ------------------------------------------------------------
1   1    108   Oracle AI Vector Search stores and indexes vector embeddings
         for fast retrieval and similarity search.
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1   109  234   About Oracle AI Vector Search
            Vector Indexes are a new classification of specialized index
            es that are designed for Artificial Intelligence (AI) worklo
            ads that allow you to query data based on semantics, rather
            than keywords.

1   343  204   Why Use Oracle AI Vector Search?
            The biggest benefit of Oracle AI Vector Search is that seman
            tic search on unstructured data can be combined with relatio
            nal search on business data in one single system.

The chunking results contain:

• chunk_id as DOC: ID for each chunk

• chunk_offset as POS: Original position of each chunk in the source document, relative
to the start of document (which has a position of 1)

• chunk_length as SIZ: Character length of each chunk

• chunk_data as TXT: Textual content from each chunk

Related Topics

• VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings
that can be used with vector indexes or hybrid vector indexes.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain
text document into smaller chunks of text.

Convert File to Text to Chunks to Embeddings Within Oracle Database
First convert a PDF file to text, split the text into chunks, and then create vector embeddings on
each chunk by accessing a vector embedding model stored in the database.

You can run parallel or step-by-step transformations like this for standalone applications where
you want to review, inspect, and accordingly amend results at each stage and then proceed
further.

Here, you use a set of functions from the DBMS_VECTOR_CHAIN package, such as UTL_TO_TEXT,
UTL_TO_CHUNKS, and UTL_TO_EMBEDDINGS.

To generate embeddings using a vector embedding model stored in the database, through
step-by-step transformation chains:

1. Connect as a local user and prepare your data dump directory.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
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EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory (VEC_DUMP) to store your input data and model files. Grant
necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Connect as the local user (docuser):

conn docuser/password

2. Convert file to text.

a. Create a relational table (documentation_tab) and store your PDF document (Oracle
Database Concepts) in it:

drop table documentation_tab purge;

CREATE TABLE documentation_tab (id number, data blob);

INSERT INTO documentation_tab values(1, to_blob(bfilename('VEC_DUMP', 
'database-concepts23ai.pdf')));

commit;

SELECT dbms_lob.getlength(t.data) from documentation_tab t;

Chapter 4
Vector Generation Examples

4-85



b. Call UTL_TO_TEXT to convert the PDF document into text format:

SELECT dbms_vector_chain.utl_to_text(dt.data) from documentation_tab dt;

An excerpt from the output is as follows:

DBMS_VECTOR_CHAIN.UTL_TO_TEXT(DT.DATA)
--------------------------------------------------------------------------
Database Concepts
23ai
Oracle Database Database Concepts, 23ai

This software and related documentation are provided under a license 
agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except 
as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, 
translate
, broadcast, modify, license, transmit, distribute, exhibit, perform, 
publish, or display any part, in any for
m, or by any means. Reverse engineering, disassembly, or decompilation of 
this software, unless required by
law for interoperability, is prohibited.

Contents

Preface
Audience
xxiii
Documentation Accessibility
xxiii
Related Documentation
xxiv
Conventions
xxiv
1
Introduction to Oracle Database
About Relational Databases
1-1
Database Management System (DBMS)
1-2
Relational Model
1-2
Relational Database Management System (RDBMS)
1-3
Brief History of Oracle Database
1-3
Schema Objects
1-5
Tables
1-5
Indexes
1-6
Data Access

Chapter 4
Vector Generation Examples

4-86



1 row selected.

3. Convert text to chunks.

a. Call UTL_TO_CHUNKS to chunk the text document:

Here, you create the chunks using the default chunking parameters.

SELECT ct.* 
  from documentation_tab dt, 
  
dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data)) 
ct;

An excerpt from the output is as follows:

{"chunk_id":1,"chunk_offset":1508024,"chunk_length":579,"chunk_data":"In
ventory 
\n\n\n\nAnalysis \n\n\n\nReporting \n\n\n\nMining\n\n\n\nSummary 
\n\n\n\nData
 \n\n\n\nRaw Data\n\n\n\nMetadata\n\n\n\nSee Also:\n\n\n\nOracle 
Database Data 
Warehousing Guide to learn about transformation 
\n\n\n\nmechanisms\n\n\n\nOvervie
w of Extraction, Transformation, and Loading (ETL) \n\n\n\nThe process 
of extrac
ting data from source systems and bringing it into the warehouse is 
\n\n\n\ncomm
only called ETL: extraction, transformation, and loading. ETL refers to 
a broad
process \n\n\n\nrather than three well-defined steps.\n\n\n\nIn a 
typical scenar
io, data from one or more operational systems is extracted and then"}

{"chunk_id":2,"chunk_offset":1508603,"chunk_length":607,"chunk_data":"ph
ysica
lly transported to the target system or an intermediate system for 
processing. \
n\n\n\nDepending on the method of transportation, some transformations 
can occur
 during this \n\n\n\nprocess. For example, a SQL statement that 
directly accesse
s a remote target through a \n\n\n\ngateway can concatenate two columns 
as part
of the \n\n\n\nSELECT\n\n\n\nstatement. \n\n\n\nOracle Database is not 
itself an
 ETL tool. However, Oracle Database provides a rich set of 
\n\n\n\ncapabilities
usable by ETL tools and customized ETL solutions. ETL capabilities 
provided by \
n\n\n\nOracle Database include:\n\n\n\n? \n\n\n\nTransportable 
tablespaces"}

3728 rows selected.
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Notice the extra spaces and newline characters (\n\n) in the chunked output. This is
because normalization is not applied by default. As shown in the next step, you can
apply custom chunking specifications, such as normalize to omit duplicate characters,
extra spaces, or newline characters from the output. You can further refine your
chunks by applying other chunking specifications, such as split conditions or maximum
size limits.

b. Apply the following JSON parameters to use normalization and some of the custom
chunking specifications (described in Explore Chunking Techniques and Examples):

SELECT ct.* 
  from documentation_tab dt, 
  dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(
    dt.data),   
    JSON('{
           "by" : "words",
           "max" : "100",
           "overlap" : "0",
           "split" : "recursively",
           "language" : "american",
           "normalize" : "all"
          }')) ct;

The output may now appear as:

{"chunk_id":2536,"chunk_offset":1372527,"chunk_length":633,"chunk_data":
"The dat
abase maps granules to parallel execution servers at execution time. 
When a para
llel execution server finishes reading the rows corresponding to a 
granule, and 
when granules remain, it obtains another granule from the query 
coordinator. This
operation continues until the table has been read. The execution 
servers send 
results back to the coordinator, which assembles the pieces into the 
desired full
table scan. Oracle Database VLDB and Partitioning Guide to learn how to 
use 
parallel execution. Oracle Database Data Warehousing Guide to learn 
about 
recommended"}

{"chunk_id":2537,"chunk_offset":1373160,"chunk_length":701,"chunk_data":
"initial
ization parameters for parallelism\n\nChapter 18\n\nOverview of 
Background Proce
sses\n\nApplication and Oracle Net Services Architecture\n\nThis 
chapter defines
application architecture and describes how an Oracle database and 
database appli
cations work in a distributed processing environment. This material 
applies to 
almost every type of Oracle Database environment. Overview of Oracle 
Application
Architecture In the context of this chapter, application architecture 
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refers to 
the computing environment in which a database application connects to 
an Oracle
database."}

3728 rows selected.

The chunking results contain:

• chunk_id: Chunk ID for each chunk

• chunk_offset: Original position of each chunk in the source document, relative to
the start of document (which has a position of 1)

• chunk_length: Character length of each chunk

• chunk_data: Text pieces from each chunk

4. Convert chunks to embeddings.

a. Load your embedding model into Oracle Database by calling the load_onnx_model
procedure.

EXECUTE dbms_vector.drop_onnx_model(model_name => 'doc_model', force => 
true);

EXECUTE dbms_vector.load_onnx_model('VEC_DUMP', 
'my_embedding_model.onnx', 'doc_model', JSON('{"function" : 
"embedding", "embeddingOutput" : "embedding" , "input": {"input": 
["DATA"]}}'));

In this example, the procedure loads an ONNX model file, named
my_embedding_model.onnx from the VEC_DUMP directory, into the database as
doc_model. You must replace my_embedding_model.onnx with an ONNX export of your
embedding model and doc_model with the name under which the imported model is
stored in the database.

Note:

If you do not have an embedding model in ONNX format, then perform the
steps listed in ONNX Pipeline Models : Text Embedding.

b. Call UTL_TO_EMBEDDINGS to generate a set of vector embeddings corresponding to the
chunks:

var embed_params clob;
exec :embed_params := '{"provider":"database", "model":"doc_model"}';

SELECT et.* from 
  documentation_tab dt,
  dbms_vector_chain.utl_to_embeddings(
    
dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data)),
    json(:embed_params)) et;
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An excerpt from the output is as follows:

{"embed_id":"1","embed_data":"Introduction to Oracle Database\n\n\nThis
chapter provides an overview of Oracle Database. Every organization has 
informat
ion that it must store and manage to meet its requirements. For example, a 
corpo
ration must collect and maintain human resources records for its 
employees. About
Relational Databases and Schema Objects\n\n\nData Access tables with 
parent keys,
base, upgrade, UROWID data type, user global area (UGA), user program 
interface,
","embed_vector":"[0.111119926,0.0423980951,-0.00929224491,-0.0352411047,-0
.0144
591287,0.0277361721,0.183199733,-0.0245029964,-0.137614027,0.0730137378,0.0
17934
6036,0.0788726509,0.0176453814,0.100403085,-0.0518687107,-0.0152645027,0.02
83792
187,-0.114087239,0.0139923804,0.0747490972,-0.181839675,-0.130034953,0.1012
07718
,0.117135495,-0.0682030097,-0.217743069,0.0613380745,0.0150767341,0.0361393
057,-
0.113082513,-0.0550440662,-0.000983044971,-0.00719357422,0.1590323,-0.02204
14512
,-0.0723528489,-0.0126240514,-0.175765082,0.168952227,0.0466451086,-0.12136
507,-
0.0442310236,0.0139067639,0.054659389,-0.29653421,-0.0988782048,0.079434923
8,-0.
0758788213,0.0152856084,-0.0260562375,0.0652966872,-0.0782724097,-0.0226081
386,0
.0909011662,-0.184569761,0.159565002,-0.15350005,-0.0108382348,0.101788878,
1.919
59683E-002,2.54665539E-002,2.50248201E-002,5.29858321E-002,1.42359538E-002,
5.655
82886E-002,3.41602638E-002,3.18607911E-002,-3.07250433E-002,-3.60006578E-00
2,-3.
26940455E-002,-5.13980947E-002,-9.18597169E-003,-2.40122043E-002,2.15246622
E-002
,-3.89301814E-002,1.09825116E-002,-8.59739035E-002,-3.34327705E-002,-6.5231
0252E
-002,2.46418975E-002,6.27725571E-003,6.54156879E-002,-2.97986511E-003,-1.48
5541E
-003,-9.00155635E-003]"}

{"embed_id":2,"embed_data":"1-18 Database, 19-6 write-ahead,18-17 Learn 
session 
memory in a large pool. The multitenant architecture enables an Oracle 
database 
to function as a multitenant container database (CDB). XStream,20-38\nZero 
Data 
Loss Recovery Appliance See Recovery Appliance zone maps, An application 
contai
ner consists of exactly one application root, and PDBs plugged in to this 
root.
Index-21\n D:20231208125114-08'00' D:20231208125114-08'00' 
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D:20231208125114-08'0
0' 
19-6","embed_vector":"[6.30229115E-002,6.80943206E-002,-6.94655553E-002,-2.
58
157589E-002,-1.89648587E-002,-9.02655348E-002,1.97774544E-002,-9.39233322E-
003,-
5.06882742E-002,2.0078931E-002,-1.28898735E-003,-4.10606936E-002,2.09831214
E-003
,-4.53372523E-002,-7.09890276E-002,5.38906306E-002,-5.81014939E-002,-1.3959
175E-
004,-1.08725717E-002,-3.79145369E-002,-4.39973129E-003,3.25602405E-002,6.58
87302
2E-002,-4.27212603E-002,-3.00925318E-002,3.07144262E-002,-2.26370787E-004,-
4.623
15865E-002,1.11807801E-001,7.36674219E-002,-1.61244173E-003,7.35205635E-002
,4.16
726843E-002,-5.08309156E-002,-3.55720241E-003,4.49763797E-003,5.03803678E-0
02,2.
32542045E-002,-2.58533042E-002,9.06257033E-002,8.49585086E-002,8.65213498E-
002,5
.84013164E-002,-7.72946924E-002,6.65430725E-002,-1.64568517E-002,3.23978886
E-002
,2.24988302E-003,3.02566844E-003,-2.43405364E-002,9.75424573E-002,4.1463053
8E-00
3,1.89351812E-002,-1.10467218E-001,-1.24333188E-001,-2.36738548E-002,7.5427
7706E
-002,-1.64660662E-002,-1.38906585E-002,3.42438952E-003,-1.88432514E-005,-2.
47511
379E-002,-3.42802797E-003,3.23110656E-003,4.24311385E-002,6.59448802E-002,-
3.311
67318E-002,-5.14010936E-002,2.38897409E-002,-9.00154635E-002]"}

3728 rows selected.

The embedding results contain:

• embed_id: ID number of each vector embedding

• embed_data: Input text that is transformed into embeddings

• embed_vector: Generated vector representations

Related Topics

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.
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Convert File to Embeddings Within Oracle Database
Directly extract vector embeddings from a PDF document, using a single-step statement, by
accessing a vector embedding model stored in the database.

Here, you perform a file-to-text-to-chunks-to-embeddings transformation by calling a set of
DBMS_VECTOR_CHAIN.UTL functions in a single CREATE TABLE statement.

This statement creates a relational table (doc_chunks) from unstructured text chunks and the
corresponding vector embeddings:

CREATE TABLE doc_chunks as
(select dt.id doc_id, et.embed_id, et.embed_data, to_vector(et.embed_vector) 
embed_vector
 from
   documentation_tab dt,
   dbms_vector_chain.utl_to_embeddings(
       
dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data), 
json('{"normalize":"all"}')),
       json('{"provider":"database", "model":"doc_model"}')) t,
   JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH 
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector 
CLOB PATH '$.embed_vector')) et
);

Note that each successive function depends on the output of the previous function, so the
order of chains is important here. First, the output from utl_to_text (dt.data column) is
passed as an input for utl_to_chunks and then the output from utl_to_chunks is passed as
an input for utl_to_embeddings.

For complete example, run SQL Quick Start Using a Vector Embedding Model Uploaded into
the Database, where you can see how to embed Oracle Database Documentation books in the
doc_chunks table and perform similarity searches using vector indexes.

Generate and Use Embeddings for an End-to-End Search
First generate vector embeddings from textual content by using a vector embedding model
stored in the database, and then populate and query a vector index. At query time, you also
vectorize the query criteria on the fly.

This example covers the entire workflow of Oracle AI Vector Search (as explained in 
Understand the Stages of Data Transformations). If you are not yet familiar with the concepts
beyond generating embeddings (such as creating and querying vector indexes), review the
remaining sections before running this scenario.
To run an end-to-end similarity search workflow by accessing a vector embedding model
stored in the database:

1. Start SQL*Plus and connect to Oracle Database as a local user:
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a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory (VEC_DUMP) to store your input data and model files. Grant
necessary privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Connect as the local user (docuser):

conn docuser/password

2. Create a relational table (documentation_tab) and store your textual content in it.

drop table documentation_tab purge;

create table documentation_tab (id number, text clob);

insert into documentation_tab values (1, 
    'Analytics empowers business analysts and consumers with modern, AI-
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powered, self-service analytics capabilities for data preparation, 
visualization, enterprise reporting, augmented analysis, and natural 
language processing.
     Oracle Analytics Cloud is a scalable and secure public cloud service 
that provides capabilities to explore and perform collaborative analytics 
for you, your workgroup, and your enterprise.
     
     Oracle Analytics Cloud is available on Oracle Cloud Infrastructure 
Gen 2 in several regions in North America, EMEA, APAC, and LAD when you 
subscribe through Universal Credits. You can subscribe to Professional 
Edition or Enterprise Edition.');
   
insert into documentation_tab values (3, 
    'Generative AI Data Science is a fully managed and serverless platform 
for data science teams to build, train, and manage machine learning models 
in the Oracle Cloud Infrastructure.');

insert into documentation_tab values (4, 
    'Language allows you to perform sophisticated text analysis at scale. 
Using the pretrained and custom models, you can process unstructured text 
to extract insights without data science expertise. 
     Pretrained models include sentiment analysis, key phrase extraction, 
text classification, and named entity recognition. You can also train 
custom models for named entity recognition and text 
     classification with domain specific datasets. Additionally, you can 
translate text across numerous languages.');

insert into documentation_tab values (5, 
    'When you work with Oracle Cloud Infrastructure, one of the first 
steps is to set up a virtual cloud network (VCN) for your cloud resources. 
This topic gives you an overview of Oracle Cloud 
     Infrastructure Networking components and typical scenarios for using 
a VCN. A virtual, private network that you set up in Oracle data centers. 
It closely resembles a traditional network, with
     firewall rules and specific types of communication gateways that you 
can choose to use. A VCN resides in a single Oracle Cloud Infrastructure 
region and covers one or more CIDR blocks 
     (IPv4 and IPv6, if enabled). See Allowed VCN Size and Address Ranges. 
The terms virtual cloud network, VCN, and cloud network are used 
interchangeably in this documentation. 
     For more information, see VCNs and Subnets.');

insert into documentation_tab values (6, 
    'NetSuite banking offers several processing options to accurately 
track your income. You can record deposits to your bank accounts to 
capture customer payments and other monies received in the
     course of doing business. For a deposit, you can select payments 
received for existing transactions, add funds not related to transaction 
payments, and record any cash received back from the bank.');

commit;
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3. Load your embedding model by calling the load_onnx_model procedure.

EXECUTE dbms_vector.drop_onnx_model(model_name => 'doc_model', force => 
true);

EXECUTE dbms_vector.load_onnx_model(
   'VEC_DUMP', 
   'my_embedding_model.onnx', 
   'doc_model', 
   json('{"function" : "embedding", "embeddingOutput" : "embedding" , 
"input": {"input": ["DATA"]}}')
);

In this example, the procedure loads an ONNX model file, named
my_embedding_model.onnx from the VEC_DUMP directory, into the database as doc_model.
You must replace my_embedding_model.onnx with an ONNX export of your embedding
model and doc_model with the name under which the imported model is stored in the
database.

Note:

If you do not have an embedding model in ONNX format, then perform the steps
listed in ONNX Pipeline Models : Text Embedding.

4. Create a relational table (doc_chunks) to store unstructured data chunks and associated
vector embeddings, by using doc_model.

create table doc_chunks as (
  SELECT d.id id,
         row_number() over (partition by d.id order by d.id) chunk_id,
         vc.chunk_offset chunk_offset,
         vc.chunk_length chunk_length, 
         vc.chunk_text chunk,
         vector_embedding(doc_model using vc.chunk_text as data) vector
  FROM documentation_tab d,
       vector_chunks(d.text by words max 100 overlap 10 split RECURSIVELY) 
vc
);

The CREATE TABLE statement reads the text from the DOCUMENTATION_TAB table, first applies
the VECTOR_CHUNKS SQL function to split the text into chunks based on the specified
chunking parameters, and then applies the VECTOR_EMBEDDING SQL function to generate
corresponding vector embedding on each resulting chunk text.

5. Explore the doc_chunks table by selecting rows from it to see the chunked output.

desc doc_chunks;
set linesize 100
set long 1000
col id for 999
col chunk_id for 99999
col chunk_offset for 99999
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col chunk_length for 99999
col chunk for a30
col vector for a100

select id, chunk_id, chunk_offset, chunk_length, chunk from doc_chunks;

The chunking output returns a set of seven chunks, which are split recursively, that is,
using the BLANKLINE, NEWLINE, SPACE, NONE sequence. Note that Document 5 produces two
chunks when the maximum word limit of 100 is reached.

You can see that the first chunk ends at a blank line. The text from the first chunk overlaps
onto the second chunk, that is, 10 words (including comma and period; underlined below)
are overlapping. Similarly, there is an overlap of 10 (also underlined below) between the
fifth and sixth chunks.

  ID CHUNK_ID CHUNK_OFFSET CHUNK_LENGTH CHUNK
---- -------- ------------ ------------ ------------------------------
   1     1         1       418  Analytics empowers business an
                          alysts and consumers with mode
                          rn, AI-powered, self-service a
                          nalytics capabilities for data
                          preparation, visualization, e
                          nterprise reporting, augmented
                          analysis, and natural languag
                          e processing.
                          Oracle Analytics Cloud is
                          a scalable and secure public
                          cloud service that provides ca
                          pabilities to explore and perf
                          orm collaborative analytics for
                          you, your workgroup, and your
                          enterprise.

   1     2         373     291 for you, your workgroup, and 
                          your enterprise.
                          Oracle Analytics Cloud is
                          available on Oracle Cloud Inf
                          rastructure Gen 2 in several r
                          egions in North America, EMEA,
                          APAC, and LAD when you subscr
                          ibe through Universal Credits.
                          You can subscribe to Professi
                          onal Edition or Enterprise Edi
                          tion.

   3     1        1     180  Generative AI Data Science is
                          a fully managed and serverless
                          platform for data science tea
                          ms to build, train, and manage
                          machine learning models in th
                          e Oracle Cloud Infrastructure.

   4     1        1     505  Language allows you to perform
                          sophisticated text analysis a
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                          t scale. Using the pretrained
                          and custom models, you can pro
                          cess unstructured text to extr
                          act insights without data scie
                          nce expertise.
                          Pretrained models include
                          sentiment analysis, key phras
                          e extraction, text classificat
                          ion, and named entity recognit
                          ion. You can also train custom
                          models for named entity recog
                          nition and text
                          classification with domai
                          n specific datasets. Additiona
                          lly, you can translate text ac
                          ross numerous languages.

   5     1        1     386  When you work with Oracle Clou
                          d Infrastructure, one of the f
                          irst steps is to set up a virt
                          ual cloud network (VCN) for yo
                          ur cloud resources. This topic
                          gives you an overview of Orac
                          le Cloud
                          Infrastructure Networking
                          components and typical scenar
                          ios for using a VCN. A virtual
                          , private network that you set
                          up in Oracle data centers. It
                          closely resembles a tradition
                          al network, with

   5     2         329     474  centers. It closely resembles
                          a traditional network, with
                          firewall rules and specif
                          ic types of communication gate
                          ways that you can choose to us
                          e. A VCN resides in a single O
                          racle Cloud Infrastructure reg
                          ion and covers one or more CID
                          R blocks
                          (IPv4 and IPv6, if enable
                          d). See Allowed VCN Size and A
                          ddress Ranges. The terms virtu
                          al cloud network, VCN, and clo
                          ud network are used interchang
                          eably in this documentation.
                          For more information, see
                          VCNs and Subnets.

   6     1        1     393  NetSuite banking offers severa
                          l processing options to accura
                          tely track your income. You ca
                          n record deposits to your bank
                          accounts to capture customer
                          payments and other monies rece
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                          ived in the
                          course of doing business.
                          For a deposit, you can select
                          payments received for existin
                          g transactions, add funds not
                          related to transaction payment
                          s, and record any cash receive
                          d back from the bank.

7 rows selected.

6. Explore the first vector result by selecting rows from the doc_chunks table to see the
embedding output.

select vector from doc_chunks where rownum <= 1;

An excerpt from the output is as follows:

[1.18813422E-002,2.53968383E-003,-5.33896387E-002,1.46877998E-003,5.7720981
5E-002,-1.58939194E-002,3
.12595293E-002,-1.13087103E-001,8.5138239E-002,1.10731693E-002,3.70671228E-
002,4.03710492E-002,1.503
95066E-001,3.31836529E-002,-1.98343433E-002,6.16453104E-002,4.2827677E-002,
-4.02921103E-002,-7.84291
551E-002,-4.79201972E-002,-5.06678E-002,-1.36317732E-002,-3.7761624E-003,-2
.3332756E-002,1.42400926E
-002,-1.11553416E-001,-3.70503664E-002,-2.60722954E-002,-1.2074843E-002,-3.
55089158E-002,-1.03518805
E-002,-7.05051869E-002,5.63110895E-002,4.79055084E-002,-1.46315445E-003,8.8
3129537E-002,5.12795225E-
002,7.5858552E-003,-4.13030013E-002,-5.2099824E-002,5.75958602E-002,3.72097
567E-002,6.11167103E-002,
,-1.23207876E-003,-5.46219759E-003,3.04734893E-002,1.80617068E-002,-2.85708
476E-002,-1.01670986E-002
,6.49402961E-002,-9.76506807E-003,6.15146831E-002,5.27246818E-002,7.4499443
2E-002,-5.86469211E-002,8
.84285953E-004,2.77456306E-002,1.99283361E-002,2.37570312E-002,2.33389344E-
002,-4.07911092E-002,-7.6
1070028E-002,1.23929314E-001,6.65794984E-002,-6.15389943E-002,2.62510721E-0
02,-2.48490628E-002]

7. Create an index on top of the doc_chunks table's vector column.

create vector index vidx on doc_chunks (vector) 
   organization neighbor partitions 
   with target accuracy 95 
   distance EUCLIDEAN parameters (
    type IVF,
    neighbor partitions 2);

8. Run queries using the vector index.
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• Query about Machine Learning:

select id, vector_distance(
    vector,
    vector_embedding(doc_model using 'machine learning models' as data),
    EUCLIDEAN) results
FROM doc_chunks order by results;

  
  ID    RESULTS
---- ----------
   3 1.074E+000
   4 1.086E+000
   5 1.212E+000
   5 1.296E+000
   1 1.304E+000
   6 1.309E+000
   1 1.365E+000

7 rows selected.

• Query about Generative AI:

select id, vector_distance(
    vector,
    vector_embedding(doc_model using 'gen ai' as data),
    EUCLIDEAN) results
FROM doc_chunks order by results;

  ID    RESULTS
---- ----------
   4 1.271E+000
   3 1.297E+000
   1 1.309E+000
   5  1.32E+000
   1 1.352E+000
   5 1.388E+000
   6 1.424E+000

7 rows selected.

• Query about Networks:

select id, vector_distance(
  vector,
  vector_embedding(doc_model using 'computing networks' as data),
  MANHATTAN) results
FROM doc_chunks order by results;

  ID    RESULTS
---- ----------
   5 1.387E+001
   5 1.441E+001
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   3 1.636E+001
   1 1.707E+001
   4 1.758E+001
   1 1.795E+001
   6 1.902E+001

7 rows selected.

• Query about Banking:

select id, vector_distance(
    vector,
    vector_embedding(doc_model using 'banking, money' as data),
    MANHATTAN) results
FROM doc_chunks order by results;

  ID    RESULTS
---- ----------
   6 1.363E+001
   1 1.969E+001
   5 1.978E+001
   5 1.997E+001
   3 1.999E+001
   1 2.058E+001
   4 2.079E+001

7 rows selected.

Related Topics

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Configure Chunking Parameters
Oracle AI Vector Search provides many parameters for chunking text data, such as SPLIT
[BY], OVERLAP, or NORMALIZE. In these examples, you can see how to configure these
parameters to define your own chunking specifications and strategies, so that you can create
meaningful chunks.

• Explore Chunking Techniques and Examples
Review these examples of all the supported chunking parameters. These examples can
provide an idea on what are good and bad chunking techniques, and thus help you define
a strategy when chunking your data.

• Create and Use Custom Vocabulary
Create and use your own vocabulary of tokens when chunking data.

• Create and Use Custom Language Data
Create and use your own language-specific conditions (such as common abbreviations)
when chunking data.
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Explore Chunking Techniques and Examples
Review these examples of all the supported chunking parameters. These examples can
provide an idea on what are good and bad chunking techniques, and thus help you define a
strategy when chunking your data.

Here, you can see how the following sample text of five lines is split when you apply various
chunking parameters to it:

Note the following:

• The lines are numbered as a reference for the explanations and include the word count in
square brackets (for example, 1[15]). The blank lines are also noted.

• The start and end boundaries of chunks are represented with colored markers.

• To perform examples with the BY VOCABULARY mode, you must create custom vocabulary
beforehand (for example, DOC_VOCAB). See Create and Use Custom Vocabulary.

Example 4-1    BY chars MAX 200 OVERLAP 0 SPLIT BY none

This example shows the simplest form of chunking, where you split the text by a fixed number
of characters (including the end-of-line characters), at whatever point that occurs in the text.

The text from the first chunk is split at an absolute maximum character of 200, which divides
the word indexes between the first two chunks. Similarly, you can see the word Oracle splitting
between second and third chunks.
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Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
                           SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
-------------------------------------------------------------------------
1         200          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized ind

201         200          exes that are designed for Artificial Intelligence 
(AI) workloads that allow you to query data based on semantics, rather than 
keywords.

                          Why Use Oracle AI Vector Search?
                          The biggest benefit of O

401         146          racle AI Vector Search is that semantic search on 
unstructured data can be combined with relational search on business data in 
one single system.

Example 4-2    BY chars MAX 200 OVERLAP 0 SPLIT BY newline

In this example, the text is split into four chunks at new lines, if possible, within the maximum
limit of 200 characters.

The text from the first chunk is split after the second line because the third line would exceed
the maximum. The third line fits within the maximum perfectly. The fourth and fifth line would
also exceed the maximum, so it produces two chunks.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
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                           SPLIT BY newline LANGUAGE american NORMALIZE none) 
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1          138         Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search

143          196         Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads that allow you to query data based on semantics, rather than 
keywords.

343          33          Why Use Oracle AI Vector Search?

377          170         The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with relational 
search on business data in one single system.

Example 4-3    BY chars MAX 200 OVERLAP 0 SPLIT BY recursively

In this example, the text is split into five chunks recursively using blank lines, newlines and
then spaces, if possible, within the maximum of 200 characters.

The first chunk is split after the first blank line because including the text after the second blank
line would exceed the maximum. The second passage exceeds the maximum on its own, so it
is broken into two chunks at the new lines. Similarly, the third section is also broken into two
chunks at the new lines.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
                           SPLIT BY recursively LANGUAGE american NORMALIZE 
none) C;
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Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1            104          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

109         30           About Oracle AI Vector Search

143         196          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads that allow you to query data based on semantics, rather than 
keywords.

343         33           Why Use Oracle AI Vector Search?

377         170          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with relational 
search on business data in one single system.

Example 4-4    BY words MAX 40 OVERLAP 0 SPLIT BY none

In this example, the text is split into three chunks at an absolute maximum word of 40, the third
line after wordloads and the fifth line after with.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
                           SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         266          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
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                          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial
                          Intelligence (AI) workloads

267         223          that allow you to query data based on semantics, 
rather than keywords.

                          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with

490         57           relational search on business data in one single 
system.

Example 4-5    BY words MAX 40 OVERLAP 0 SPLIT BY newline

In this example, the text is split into chunks at new lines, if possible, within the maximum of 40
words.

The first chunk (of 21 words) is split after the second line, as the third line would exceed the
maximum number of words (21+33 words). The third and fourth lines fit within the maximum.
The fifth line is 29 words, so fits in the last chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
                           SPLIT BY newline LANGUAGE american NORMALIZE none) 
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         138          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
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143         233          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads that allow you to query data based on semantics, rather than 
keywords.

                          Why Use Oracle AI Vector Search?

377          170          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with relational 
search on business data in one single system.

Example 4-6    BY words MAX 40 OVERLAP 0 SPLIT BY recursively

In this example, the chunks are split by words recursively using blank lines, newlines, and
spaces.

The text after the second blank line exceeds the maximum words, so the first chunk ends at
the first blank line. The second chunk (of 38 words) ends at the next blank line. The final chunk
(of 35 words) consists of the rest of the input.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
                           SPLIT BY recursively LANGUAGE american NORMALIZE 
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         104          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

109         230          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial 
                          Intelligence (AI) workloads that allow you to query 
data based on semantics, rather than keywords.
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343         204          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be
                          combined with relational search on business data in 
one single system.

Example 4-7    BY vocabulary MAX 40 OVERLAP 0 SPLIT BY none

In this example, the text is split into four chunks at an absolute maximum vocabulary token of
40, which contrasts with the three chunks produced in Example 4-4. This is because
vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40 
OVERLAP 0
                           SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         157          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
                          Vector Indexes
158         156          are a new classification of specialized indexes that 
are designed for Artificial Intelligence (AI) workloads that allow you to 
query data based on semantics

314          150          , rather than keywords.

                          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured
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464         83           data can be combined with relational search on 
business data in one single system.

Example 4-8    BY vocabulary MAX 40 OVERLAP 0 SPLIT BY newline

In this example, the text is split into five chunks with newlines, using an absolute maximum
vocabulary token of 40, which contrasts with Example 4-5.

Vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting. This example produces five chunks rather than three in Example 4-5, with the
middle passage split into two, and the final word unable to fit into the fourth chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40 
OVERLAP 0
                           SPLIT BY newline LANGUAGE american NORMALIZE none) 
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         138          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search

143         148          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads that allow you to query

291         85           data based on semantics, rather than keywords.

                          Why Use Oracle AI Vector Search?

377         162          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with relational 
search on business data in one single
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539         8            system.

Example 4-9    BY vocabulary MAX 40 OVERLAP 0 SPLIT BY recursively

In this example, the text is split into seven chunks recursively using blank lines, new lines, and
spaces and an absolute maximum vocabulary token of 40, which contrasts with the three
chunks produced in Example 4-6.

Vocabulary tokens include pieces of words, so the chunk text is generally smaller than simple
word splitting. This example produces seven chunks with the middle passage split into three
and the final passage split into three.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY vocabulary doc_vocab MAX 40 
OVERLAP 0
                           SPLIT BY recursively LANGUAGE american NORMALIZE 
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         104          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

109         30           About Oracle AI Vector Search

143         148          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads that allow you to query

291         48           data based on semantics, rather than keywords.

343         33           Why Use Oracle AI Vector Search?

377         162          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be combined with relational 
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search on business data in one single

539         8            system.

Example 4-10    BY words MAX 40 OVERLAP 5 SPLIT BY none

This example is similar to Example 4-4, except that an overlap of 5 is used here.

The first chunk ends at the maximum 40 words (after workloads). The second chunk overlaps
with the last 5 words including parentheses of the first chunk, and ends after unstructured.
The overlapping words are underlined below. The third chunk overlaps with the last 5 words,
which are also underlined.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
                           SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
-------------------
1         266         Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                         About Oracle AI Vector Search
                         Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial Intelligence (AI) 
workloads

239         225         Intelligence (AI) workloads that allow you to query 
data based on semantics, rather than keywords.

                         Why Use Oracle AI Vector Search?
                         The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured

427         120         that semantic search on unstructured data can be 
combined with relational search on business data in one single system.
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Example 4-11    BY words MAX 40 OVERLAP 5 SPLIT BY newline

This example is similar to Example 4-5, except that an overlap of 5 is used here. The
overlapping portion of a chunk must obey the same split condition, in this case must begin on a
new line.

The first chunk ends at the second line, as the third line would exceed the maximum 40 words.
The second chunk starts with the second line of 5 words of the first chunk (underlined below)
and ends at the third line. The third chunk has no overlap because the preceding line exceeds
the maximum of 5.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
                           SPLIT BY newline LANGUAGE american NORMALIZE none) 
C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
---------------------
1         138          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search

109         230          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial 
                          Intelligence (AI) workloads that allow you to query 
data based on semantics, rather than keywords.

343         204          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be
                          combined with relational search on business data in 
one single system.
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Example 4-12    BY words MAX 40 OVERLAP 5 SPLIT BY recursively

This example is similar to Example 4-6, except that an overlap of 5 is used here. The
overlapping portion of a chunk must obey the same split condition, in this case must begin at
either a blank line, new line, or space.

The text after the second blank line exceeds the maximum words, so the first chunk ends at
the first blank line. The second chunk overlaps with 5 words (beginning on a space; underlined
below) and includes the second line, but excludes the third line of 33 words. The third chunk
overlaps 5 words and ends on the second blank line. The fourth chunk consumes the rest of
the input.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 5
                           SPLIT BY recursively LANGUAGE american NORMALIZE 
none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         104         Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

71           68          retrieval and similarity search.
 
                         About Oracle AI Vector Search

109         230         About Oracle AI Vector Search
                         Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial
                         Intelligence (AI) workloads that allow you to query 
data based on semantics, rather than keywords.

316          231         rather than keywords.

                         Why Use Oracle AI Vector Search?
                         The biggest benefit of Oracle AI Vector Search is 
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that semantic search on unstructured data can be
                         combined with relational search on business data in 
one single system.

Example 4-13    BY chars MAX 200 OVERLAP 0 SPLIT BY none NORMALIZE none

This example is the same as the first one (Example 4-1), to contrast with the next example
(Example 4-14) with normalization.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
                           SPLIT BY none LANGUAGE american NORMALIZE none) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         200          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized ind

201         200           exes that are designed for Artificial Intelligence 
(AI) workloads that allow you to query data based
                          on semantics, rather than keywords.

                          Why Use Oracle AI Vector Search?
                          The biggest benefit of O

401         146           racle AI Vector Search is that semantic search on 
unstructured data can be combined with relational
                          search on business data in one single system.

Chapter 4
Vector Generation Examples

4-113



Example 4-14    BY chars MAX 200 OVERLAP 0 SPLIT BY none NORMALIZE whitespace

This example enables whitespace normalization, which collapses redundant white space to
produce more content within a chunk maximum.

The first chunk extends 8 more characters due to the two indented lines of 4 spaces each
(marked with underscores _ below). The second chunk extends 4 more characters due to the
one indented line of 4 total spaces. The third chunk has the remaining input.

This example shows that the chunk length (normally in bytes) can differ from the chunk text's
size. The CHUNK_OFFSET and CHUNK_LENGTH represent the original source location of the chunk.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY chars MAX 200 OVERLAP 0
                           SPLIT BY none LANGUAGE american NORMALIZE 
whitespace) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1         208          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

                          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized indexes tha

209         205          t are designed for Artificial Intelligence (AI) 
workloads that allow you to query data based on sema
                          ntics, rather than keywords.

                          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vect

414          133          or Search is that semantic search on unstructured 
data can be combined with relational search on business data in one single 
system.
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Example 4-15    BY words MAX 40 OVERLAP 0 SPLIT BY sentence LANGUAGE American

This example uses end-of-sentence splitting which uses language-specific data and heuristics
(such as sentence punctuations, contextual rules, or common abbreviations) to determine
likely sentence boundaries. Three chunks are produced, each ending at the periods.

You can use this technique to keep your text intact for chunks that contain many split
sentences. Otherwise, the text may lose semantic context and may not be useful for queries
that target specific information.

Syntax:

SELECT C.*
FROM documentation_tab D, VECTOR_CHUNKS(D.text BY words MAX 40 OVERLAP 0
                           SPLIT BY sentence LANGUAGE american NORMALIZE 
NONE) C;

Output:

CHUNK_OFFSET CHUNK_LENGTH CHUNK_TEXT
------------------------------------------------------------------------------
--------------------
1            102          Oracle AI Vector Search stores and indexes vector 
embeddings for fast retrieval and similarity search.

109          228          About Oracle AI Vector Search
                          Vector Indexes are a new classification of 
specialized indexes that are designed for Artificial
                          Intelligence (AI) workloads that allow you to query 
data based on semantics, rather than keywords.

343         203          Why Use Oracle AI Vector Search?
                          The biggest benefit of Oracle AI Vector Search is 
that semantic search on unstructured data can be
                          combined with relational search on business data in 
one single system.

Example 4-16    BY words MAX 40 OVERLAP 0 SPLIT BY sentence LANGUAGE Simplified Chinese

In continuation with the preceding example, this example uses a Simplified Chinese text as the
input to specify language-specific sentence chunking.
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The output contains four chunks, each ending at the periods:

For the purpose of clarity, in this example, documentation_tab is a CLOB inserted with the
following ChineseDoc.txt document:

使用 My Oracle Support 之前，您的用务概要信息中必务至少具有一个客务服务号。客务服务号是
务务您所在务务的唯一参考号。使用 My Oracle Support 务务向您的概要信息中添加一个客务服务
号。有关务务信息，务参务 My Oracle Support 帮助的“如何将客务服务号添加到概要信息？

Perform the chunking operation as follows:

-- create a relational table

DROP TABLE IF EXISTS documentation_tab;
CREATE TABLE documentation_tab (
    id   NUMBER,
    text CLOB);

-- create a local directory and store the document into the table

CREATE OR REPLACE DIRECTORY VEC_DUMP AS '/my_local_dir/';
CREATE OR REPLACE PROCEDURE my_clob_from_file(
    p_dir in varchar2,
    p_file in varchar2,
    p_id in number 
  ) AS
  dest_loc CLOB;
  v_bfile bfile := null;
  v_lang_context number := dbms_lob.default_lang_ctx;
  v_dest_offset integer := 1;
  v_src_offset integer := 1;
  v_warning number;
BEGIN
        insert into documentation_tab values(p_id,empty_clob()) returning text
        into dest_loc;

                v_bfile := BFileName(p_dir, p_file);

                dbms_lob.open(v_bfile, dbms_lob.lob_readonly);
                dbms_lob.loadClobFromFile(
                                dest_loc, 
                                v_bfile,
                                dbms_lob.lobmaxsize,
                                v_dest_offset,
                                v_src_offset,
                                873,
                                v_lang_context,
                                v_warning);
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        dbms_lob.close(v_bfile);
END my_clob_from_file;
/

show errors;

-- transform clob into chunks

exec my_clob_from_file('VEC_DUMP', 'ChineseDoc.txt', 1);

SELECT rownum as id, C.chunk_offset pos, C.chunk_length as siz,
       REPLACE(SUBSTR(C.chunk_text,1,15),CHR(10),'_') as beg,
       '...' as rng,
       REPLACE(SUBSTR(C.chunk_text,-15),CHR(10),'_') as end
FROM documentation_tab D, VECTOR_CHUNKS(to_char(D.text) BY words
                                 MAX 40
                                 OVERLAP 0
                                 SPLIT BY sentence
                                 LANGUAGE "simplified chinese"
                                 NORMALIZE none) C;

Output:

ID   POS  SIZ  BEG                          RNG END
---- ---- ---- ---------------------------  --- ------------------------
 1    1   103  使用 My Oracle Su             ... 中必务至少具有一个客务服务号。
 2  104    60  客务服务号是务务您所在务务的唯    ... 是务务您所在务务的唯一参考号。
 3  164    85  使用 My Oracle Su             ... 概要信息中添加一个客务服务号。
 4  249   109  有关务务信息，务参务 My O       ... 何将客务服务号添加到概要信息？

Related Topics

• VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings
that can be used with vector indexes or hybrid vector indexes.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain
text document into smaller chunks of text.

Create and Use Custom Vocabulary
Create and use your own vocabulary of tokens when chunking data.

Here, you use the chunker helper function CREATE_VOCABULARY from the DBMS_VECTOR_CHAIN
package to load custom vocabulary. This vocabulary file contains a list of tokens, recognized
by your vector embedding model's tokenizer.

1. Connect as a local user and prepare your data dump directory.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
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EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory (VEC_DUMP) to store your vocabulary file. Grant necessary
privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Transfer the vocabulary file for your required model to the VEC_DUMP directory.

For example, if using the WordPiece tokenization, you can download and transfer the
vocab.txt vocabulary file for "bert-base-uncased".

e. Connect as the local user (docuser):

conn docuser/password

2. Create a relational table (doc_vocabtab) to store your vocabulary tokens in it:

CREATE TABLE doc_vocabtab(token nvarchar2(64))
  ORGANIZATION EXTERNAL
  (default directory VEC_DUMP
   ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE)
   location ('bert-vocabulary-uncased.txt'));

3. Create a vocabulary (doc_vocab) by calling DBMS_VECTOR_CHAIN.CREATE_VOCABULARY:

DECLARE
  vocab_params clob := '{
                         "table_name"      : "doc_vocabtab",
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                         "column_name"     : "token",
                         "vocabulary_name" : "doc_vocab",
                         "format"          : "bert",
                         "cased"           : false
                        }';

BEGIN
  dbms_vector_chain.create_vocabulary(json(vocab_params));
END;
/

After loading the token vocabulary, you can now use the BY VOCABULARY chunking mode (with
VECTOR_CHUNKS or UTL_TO_CHUNKS) to split data by counting the number of tokens.

Related Topics

• CREATE_VOCABULARY
Use the DBMS_VECTOR_CHAIN.CREATE_VOCABULARY chunker helper procedure to load your
own token vocabulary file into the database.

• VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings
that can be used with vector indexes or hybrid vector indexes.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain
text document into smaller chunks of text.

Create and Use Custom Language Data
Create and use your own language-specific conditions (such as common abbreviations) when
chunking data.

Here, you use the chunker helper function CREATE_LANG_DATA from the DBMS_VECTOR_CHAIN
package to load the data file for Simplified Chinese. This data file contains abbreviation tokens
for your chosen language.

1. Connect as a local user and prepare your data dump directory.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000
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b. Create a local user (docuser) and grant necessary privileges:

drop user docuser cascade;

create user docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

grant DB_DEVELOPER_ROLE to docuser;

c. Create a local directory (VEC_DUMP) to store your language data file. Grant necessary
privileges:

create or replace directory VEC_DUMP as '/my_local_dir/';

grant read, write on directory VEC_DUMP to docuser;

commit;

d. Transfer the data file for your required language to the VEC_DUMP directory. For
example, dreoszhs.txt for Simplified Chinese.

To know the data file location for your language, see Supported Languages and Data
File Locations.

e. Connect as the local user (docuser):

conn docuser/password

2. Create a relational table (doc_langtab) to store your abbreviation tokens in it:

CREATE TABLE doc_langtab(token nvarchar2(64))
  ORGANIZATION EXTERNAL
  (default directory VEC_DUMP
   ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE CHARACTERSET AL32UTF8)
   location ('dreoszhs.txt'));

3. Create language data (doc_lang_data) by calling DBMS_VECTOR_CHAIN.CREATE_LANG_DATA:

DECLARE
  lang_params clob := '{
                         "table_name"      : "doc_langtab",
                         "column_name"     : "token",
                         "language"        : "simplified chinese",
                         "preference_name" : "doc_lang_data"
                       }';
BEGIN
  dbms_vector_chain.create_lang_data(json(lang_params));
END;
/

After loading the language data, you can now use language-specific chunking by specifying the
LANGUAGE chunking parameter with VECTOR_CHUNKS or UTL_TO_CHUNKS.
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Related Topics

• CREATE_LANG_DATA
Use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper procedure to load your
own language data file into the database.

• VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings
that can be used with vector indexes or hybrid vector indexes.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain
text document into smaller chunks of text.
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5
Store Vector Embeddings

Store vector embeddings and associated unstructured data with your relational business data
in Oracle Database.

• Create Tables Using the VECTOR Data Type
You can declare a table's column as a VECTOR data type.

• Insert Vectors in a Database Table Using the INSERT Statement
Once you create a table with a VECTOR data type column, you can directly insert vectors
into the table using the INSERT statement.

• Load Vector Data Using SQL*Loader
Use these examples to understand how you can load character and binary vector data.

• Unload and Load Vectors Using Oracle Data Pump
Starting with Oracle Database 23ai, Oracle Data Pump enables you to use multiple
components to load and unload vectors to databases.

Create Tables Using the VECTOR Data Type
You can declare a table's column as a VECTOR data type.

The following command shows a simple example:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR);

In this example, you don't have to specify the number of dimensions or their format, which are
both optional. If you don't specify any of them, you can enter vectors of different dimensions
with different formats. This is a simplification to help you get started with using vectors in
Oracle Database.

Note:

Such vectors typically arise from different embedding models. Vectors from different
models (providing a different semantic landscape) are not comparable for use in
similarity search.

Here's a more complex example that imposes more constraints on what you can store:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR(768, INT8)) ;

In this example, each vector that is stored:

• Must have 768 dimensions, and

• Each dimension will be formatted as an INT8.
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The number of dimensions must be strictly greater than zero with a maximum of 65535 for
non-BINARY vectors and 65528 for BINARY vectors. If you attempt to use larger values, the
following error is raised:

ORA-51801: Invalid VECTOR type specification: Invalid dimension
count ('...'). Valid values can either be * (i.e. flexible) or an
integer between 1 and 65535.

BINARY vectors must have a dimension that is a multiple of 8. If the specified dimension is not a
multiple of 8, the following error is raised:

ORA-51813: Vector of BINARY format should have a dimension count 
that is a multiple of 8.

The possible dimension formats are:

• INT8 (8-bit integers)

• FLOAT32 (32-bit IEEE floating-point numbers)

• FLOAT64 (64-bit IEEE floating-point numbers)

• BINARY (packed UINT8 bytes where each dimension is a single bit)

Oracle Database automatically casts the values as needed.

Here is some simple code that shows you how to define and insert a VECTOR in a table:

DROP TABLE my_vect_tab PURGE;
CREATE TABLE my_vect_tab (v01 VECTOR(3, INT8));
INSERT INTO my_vect_tab VALUES ('[10, 20, 30]');

SELECT * FROM my_vect_tab;

V01
----------
[10,20,30]

You use a textual form to represent a vector in SQL statements. The DENSE textual form as
shown in the preceding INSERT statement is a basic example: coordinate 1 has a value of 10,
coordinate 2 has a value of 20, and coordinate 3 has a value of 30. You separate each
coordinate with a comma and you enclose the list with square brackets.

So far, the vector types shown are, by default, DENSE vectors where each dimension is
physically stored. All the definitions seen are equivalent to the following form:

VECTOR(number_of_dimensions, dimension_element_format, DENSE) or
VECTOR(number_of_dimensions, dimension_element_format, *)

However, you also have the option to create SPARSE vectors. In contrast to DENSE vectors, a
sparse vector is a vector whose dimension values are expected to be mostly zero. When using
SPARSE vectors, only the non-zero values are physically stored. You define sparse vectors
using the following form:

VECTOR(number_of_dimensions, dimension_element_format, SPARSE)
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Note:

• It is not supported to have SPARSE storage in one row and DENSE storage in
another row for the same vector column as the coding of the two representations
are very different.

• Sparse vectors are not supported with BINARY format.

• VECTOR(…, …, *) is always interpreted as DENSE.

• SPARSE vectors cannot be used in the creation of vector indexes.

The following table guides you through the possible declaration format for a VECTOR data type
with a DENSE storage format:

Possible Declaration Format Explanation

VECTOR Vectors can have an arbitrary number of dimensions
and formats.

VECTOR(*, *)
VECTOR(*, *, *)
VECTOR(*, *, DENSE)

Vectors can have an arbitrary number of dimensions
and formats.

VECTOR,

VECTOR(*, *),

VECTOR(*,*,*), and

VECTOR(*, *, DENSE) are equivalent.

VECTOR(number_of_dimensions)

VECTOR(number_of_dimensions, *)

VECTOR(number_of_dimensions, *, *)

VECTOR(number_of_dimensions, *, DENSE)

Vectors must all have the specified number of
dimensions or an error is thrown. Every vector will have
its dimensions stored without format modification.

VECTOR(number_of_dimensions),

VECTOR(number_of_dimensions, *),

VECTOR(number_of_dimensions, *, *), and

VECTOR(number_of_dimensions, *, DENSE) are
equivalent.

VECTOR(*, dimension_element_format)

VECTOR(*, dimension_element_format, *)

VECTOR(*, dimension_element_format, DENSE)

Vectors can have an arbitrary number of dimensions,
but their format will be up-converted or down-converted
to the specified dimension_element_format (INT8,
FLOAT32, FLOAT64, or BINARY).

VECTOR(*, dimension_element_format),

VECTOR(*, dimension_element_format, *), and

VECTOR(*, dimension_element_format, DENSE) are
equivalent.

The following table guides you through the possible declaration format for a VECTOR data type
for sparse vectors.

Possible Declaration Format Explanation

VECTOR(*, *, SPARSE) Vectors can have an arbitrary number of dimensions and
formats besides BINARY.
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Possible Declaration Format Explanation

VECTOR(number_of_dimensions, *, SPARSE) Vectors must all have the specified number of dimensions or
an error is thrown. Every vector will have its dimensions
stored without format modification.

VECTOR(*, dimension_element_format, SPARSE) Vectors can have an arbitrary number of dimensions but their
format will be up-converted or down-converted to the
specified dimension_element_format (INT8, FLOAT32, or
FLOAT64)

The following SQL*Plus code example shows how the system interprets various vector
definitions:

CREATE TABLE my_vect_tab (
     v1  VECTOR(3, FLOAT32),
     v2  VECTOR(2, FLOAT64),
     v3  VECTOR(1, INT8),
     v4  VECTOR(1024, BINARY),
     v5  VECTOR(1, *),
     v6  VECTOR(*, FLOAT32),
     v7  VECTOR(*, *),
     v8  VECTOR,
     v9  VECTOR(10),
     v10 VECTOR(*, *, DENSE),
     v11 VECTOR(1024, FLOAT32, DENSE),
     v12 VECTOR(1000, INT8, SPARSE),
     v13 VECTOR(*, INT8, SPARSE),
     v14 VECTOR(*, *, SPARSE),
     v15 VECTOR(2048, FLOAT32, *)
   );

Table created.

DESC my_vect_tab;
 Name                        Null?    Type
 --------------------------- -------- ----------------------------
 V1                                   VECTOR(3 , FLOAT32, DENSE)
 V2                                   VECTOR(2 , FLOAT64, DENSE)
 V3                                   VECTOR(1 , INT8, DENSE)
 V4                                   VECTOR(1024, BINARY, DENSE)
 V5                                   VECTOR(1 , *, DENSE)
 V6                                   VECTOR(* , FLOAT32, DENSE)
 V7                                   VECTOR(* , *, DENSE)
 V8                                   VECTOR(* , *, DENSE)
 v9                                   VECTOR(10, *, DENSE)
 v10                                  VECTOR(*, *, DENSE)
 v11                                  VECTOR(1024, FLOAT32, DENSE)
 v12                                  VECTOR(1000, INT8, SPARSE)
 v13                                  VECTOR(*, INT8, SPARSE)
 v14                                  VECTOR(*, *, SPARSE)
 v15                                  VECTOR(2048, FLOAT32, DENSE)

A vector can be NULL but its dimensions cannot (for example, you cannot have a VECTOR with a
NULL dimension such as [1.1, NULL, 2.2]).
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Note:

Vectors (DENSE and SPARSE) are internally stored as Securefile BLOBs and most
popular embedding model vector sizes are between 1.5KB and 12KB in size. You
can use the following formula to determine the size of your vectors on disk:

• For DENSE vectors:
number of vectors * number of dimensions * size of your vector dimension type
(for example, a FLOAT32 is equivalent to BINARY_FLOAT and is 4 bytes in size).

• For SPARSE vectors:
number of vectors * ((average number of sparse dimensions * 4 bytes) + (number
of sparse dimensions * size of your vector dimension type)).

Restrictions

You currently cannot define VECTOR columns in/as:

• IOTs (neither as Primary Key nor as non-Key column)

• Clusters/Cluster Tables

• Global Temp Tables

• (Sub)Partitioning Key

• Primary Key

• Foreign Key

• Unique Constraint

• Check Constraint

• Default Value

• Modify Column

• Manual Segment Space Management (MSSM) tablespace (only SYS user can create
VECTORs as Basicfiles in MSSM tablespace)

• Continuous Query Notification (CQN) queries

• Non-vector indexes such as B-tree, Bitmap, Reverse Key, Text, Spatial indexes, etc

Oracle Database does not support the following SQL constructs with VECTOR columns:

• Distinct, Count Distinct

• Order By, Group By

• Join condition

• Comparison operators (e.g. >, <, =) etc

Oracle's Globally Distributed Database has the following restrictions on vector data types:

• Sharding keys: A distributed database only supports sharding keys on non-vector columns.
The vector data can be distributed across shards using a primary key on any other non-
vector column identified as a sharding key.

• Raft replication: A distributed database using the Raft replication method for high
availability does not support vector columns.
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Topics

• Vectors in External Tables
External tables can be created with columns of type VECTOR, allowing vector embeddings
represented in text or binary format stored in external files to be rendered as the VECTOR
data type in Oracle Database.

• Vectors in Distributed Database Tables
There is no new SQL syntax or keyword when creating sharded tables and duplicated
tables with vector columns in a Globally Distributed Database; however, there are some
requirements and restrictions to consider.

• BINARY Vectors
In addition to FLOAT32 (the default format for comma-separated string representations of
vectors), FLOAT64, and INT8 dimension formats, you can also use the BINARY dimension
format.

• SPARSE Vectors
The storage format of a vector can be specified as SPARSE or DENSE. Sparse vectors are
vectors that typically have a large number of dimensions but with very few non-zero
dimension values, while Dense vectors are vectors where every dimension stores a value,
including zero-values.

Vectors in External Tables
External tables can be created with columns of type VECTOR, allowing vector embeddings
represented in text or binary format stored in external files to be rendered as the VECTOR data
type in Oracle Database.

The ability to store VECTOR data in external tables can be beneficial when considering the vast
amount of data that is involved in AI workflows. Using external tables provides a convenient
option to store vector embeddings and contextual information outside of the database while still
using the database as a semantic search engine.

The following types of external files support VECTOR columns in external tables:

• CSV

• Parquet

• Avro

• ORC

• Dmp

External tables with VECTOR columns can be accessed by using the drivers ORACLE_LOADER,
ORACLE_DATAPUMP, and ORACLE_BIGDATA. Once the chosen driver has loaded the file data into
the database, you can interact with the external table rows in any SQL operation (supported by
your preferred SQL interface), such as joins, SQL functions, aggregation, and so on.

Vectors of any dimension format and storage format are supported. If a vector is SPARSE, the
data must be provided as text as opposed to an array or list format.

Columns of type VECTOR can be included in both explicitly created external tables as well as
inline external tables created as part of a SELECT statement. The benefit of this approach is that
there is no need to predefine a static table to access the vectors in the external table before
loading them into the database. The external tables mapping is persisted only while the
external table is in use by the SQL query. For an example, see Querying an Inline External
Table, which shows how the external table mappings are created as part of the SQL query

Chapter 5
Create Tables Using the VECTOR Data Type

5-6



operation. Once the query has completed, the external table mapping is discarded from the
database.

Additionally, the row_limiting_clause can be used in SELECT statements that reference
external tables. Internal and external tables can be referenced in the same query. You can use
the CREATE TABLE AS SELECT statement to create an internal table by selecting from an
external table with VECTOR column(s). Similarly, you can use the INSERT INTO SELECT
statement to insert values into an internal table from an external table called in the SELECT
subquery.

Note:

• External tables are not currently supported in multi-vector similarity searches.

• HNSW and IVF indexes cannot currently be created on VECTOR columns stored in
external tables.

Vector embeddings in external tables can be accessed for use in similarity searches in the
same way as you would use an internal table, as in the following query:

SELECT id, embedding 
FROM external_table 
ORDER BY VECTOR_DISTANCE(embedding, '[1,1]', COSINE)
FETCH APPROX FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

The following examples demonstrate the syntax used to create external tables with VECTOR
columns depending on the access driver:

• Using ORACLE_LOADER:

CREATE TABLE ext_vec_tab1(
  v1 VECTOR,
  v2 VECTOR
) 
  ORGANIZATION EXTERNAL
  (
    TYPE ORACLE_LOADER
    DEFAULT DIRECTORY my_dir
    ACCESS PARAMETERS
    (
      RECORDS DELIMITED BY NEWLINE
      FIELDS TERMINATED BY ":"
      MISSING FIELD VALUES ARE NULL
    )
    LOCATION('my_ext_vec_embeddings.csv')
  )
REJECT LIMIT UNLIMITED;

• Using ORACLE_DATAPUMP:

-- First create the table with the loader
CREATE TABLE dp_ext_tab(
  country_code         VARCHAR2(5),
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  country_name         VARCHAR2(50),
  country_language     VARCHAR2(50),
  country_vector       VECTOR(*,*)
)
  ORGANIZATION EXTERNAL 
  (
    TYPE ORACLE_LOADER
    DEFAULT DIRECTORY my_dir
    ACCESS PARAMETERS 
    (
      RECORDS DELIMITED BY NEWLINE
      FIELDS TERMINATED BY ":"
      MISSING FIELD VALUES ARE NULL
      (
        country_code         CHAR(5),
        country_name         CHAR(50),
        country_language     CHAR(50),
        country_vector       CHAR(10000)
      )
    )
    LOCATION ('ext_vectorcountries.dat')
    )
  PARALLEL 5
  REJECT LIMIT UNLIMITED;

-- Then generate the dmp file
CREATE TABLE ext_export_table
ORGANIZATION EXTERNAL
(
  TYPE ORACLE_DATAPUMP
  DEFAULT DIRECTORY my_dir
  LOCATION ('ext.dmp')
)
  AS SELECT * FROM dp_ext_tab;

-- Finally, create an external table with the datapump driver
CREATE TABLE dp_ext_tab_final 
(
  country_code         VARCHAR2(5),
  country_name         VARCHAR2(50),
  country_language     VARCHAR2(50),
  country_vector       VECTOR(3, INT8)
)
  ORGANIZATION EXTERNAL 
  (
    TYPE ORACLE_DATAPUMP
    DEFAULT DIRECTORY my_dir
    LOCATION ('ext.dmp')
  )
  PARALLEL 5
  REJECT LIMIT UNLIMITED;

• Using ORACLE_BIGDATA:

CREATE TABLE bd_ext_tab
(
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  COL1 vector(5,INT8),
  COL2 vector(5,INT8),
  COL3 vector(5,INT8),
  COL4 vector(5,INT8)
)
  ORGANIZATION external
  (
    TYPE ORACLE_BIGDATA
    DEFAULT DIRECTORY my_dir
    ACCESS PARAMETERS
  (
    com.oracle.bigdata.credential.name\=OCI_CRED
    com.oracle.bigdata.credential.schema\=PDB_ADMIN
    com.oracle.bigdata.fileformat=parquet
    com.oracle.bigdata.debug=true
  )
  LOCATION ( 'https://swiftobjectstorage.<region>.oraclecloud.com/v1/
<namespace>/<filepath>/basic_vec_data.parquet' )
  ) 
REJECT LIMIT UNLIMITED PARALLEL 2;

• Querying an Inline External Table
In this example, vectors in an external table of type ORACLE_BIGDATA are queried as part of
a vector search.

• Performing a Semantic Similarity Search Using External Table
See a SQL example plan that illustrates how you can use external tables as the data set
for semantic similarity searches

See Also:

• Oracle Database Utilities for more information about external tables

Querying an Inline External Table
In this example, vectors in an external table of type ORACLE_BIGDATA are queried as part of a
vector search.

select * from external (
    (
      COL1 vector,
      COL2 vector,
      COL3 vector,
      COL4 vector
    )
    TYPE ORACLE_BIGDATA
    DEFAULT DIRECTORY DEF_DIR1
    ACCESS PARAMETERS
    (
      com.oracle.bigdata.credential.name\=OCI_CRED
      com.oracle.bigdata.credential.schema\=PDB_ADMIN
      com.oracle.bigdata.fileformat=parquet
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      com.oracle.bigdata.debug=true
    )
    location ( 'https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/
myvdataproject/BIGDATA_PARQUET/vector_data/basic_vector_data.parquet' )
    REJECT LIMIT UNLIMITED
  ) tkexobd_bd_vector_inline;

Performing a Semantic Similarity Search Using External Table
See a SQL example plan that illustrates how you can use external tables as the data set for
semantic similarity searches

The following is an example of an explain plan for select id, embedding from ext_table_3,
and using order by vector_distance('[1,1]', embedding, cosine) to return approximately
only the first three rows of data with a target accuracy of 90 percent:

SQL> select * from table(dbms_xplan.display('plan_table', null, 'advanced 
predicate'));
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
Plan hash value: 1784440045
 
------------------------------------------------------------------------------
--
---------------------
 
| Id  | Operation                     | Name        | Rows  | Bytes |TempSpc| 
Co
st (%CPU)| Time     |
 
------------------------------------------------------------------------------
--
---------------------
 
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
|   0 | SELECT STATEMENT              |             |     3 | 48945 |       
|  1
466K  (2)| 00:00:58 |
 
|*  1 |  COUNT STOPKEY                |             |       |       |       |
         |          |
 
|   2 |   VIEW                        |             |   102K|  1588M|       
|  1
466K  (2)| 00:00:58 |
 
|*  3 |    SORT ORDER BY STOPKEY      |             |   102K|  1589M|   
798M|  1
466K  (2)| 00:00:58 |
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PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
 
|   4 |     EXTERNAL TABLE ACCESS FULL| EXT_TABLE_3 |   102K|  1589M|       |
362   (7)| 00:00:01 |
 
------------------------------------------------------------------------------
--
---------------------
 
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
   1 - SEL$2
   2 - SEL$1 / "from$_subquery$_002"@"SEL$2"
   3 - SEL$1
   4 - SEL$1 / "EXT_TABLE_3"@"SEL$1"
 
Outline Data
-------------
 
  /*+
      BEGIN_OUTLINE_DATA
      FULL(@"SEL$1" "EXT_TABLE_3"@"SEL$1")
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
      NO_ACCESS(@"SEL$2" "from$_subquery$_002"@"SEL$2")
      OUTLINE_LEAF(@"SEL$2")
      OUTLINE_LEAF(@"SEL$1")
      ALL_ROWS
      OPT_PARAM('_fix_control' '6670551:0')
      OPT_PARAM('_optimizer_cost_model' 'fixed')
      DB_VERSION('26.1.0')
      OPTIMIZER_FEATURES_ENABLE('26.1.0')
      IGNORE_OPTIM_EMBEDDED_HINTS
      END_OUTLINE_DATA
  */
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(ROWNUM<=3)
   3 - filter(ROWNUM<=3)
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Column Projection Information (identified by operation id):
-----------------------------------------------------------
 
   1 - "from$_subquery$_002"."ID"[NUMBER,22], 
"from$_subquery$_002"."EMBEDDING"[
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
VECTOR,32600]
 
   2 - "from$_subquery$_002"."ID"[NUMBER,22], 
"from$_subquery$_002"."EMBEDDING"[
VECTOR,32600]
 
   3 - (#keys=1) VECTOR_DISTANCE(VECTOR('[1,1]', *, *, * /*+  
USEBLOBPCW_QVCGMD
*/ ),
 
       "EMBEDDING" /*+ LOB_BY_VALUE */ , COSINE)[BINARY_DOUBLE,8], 
"ID"[NUMBER,2
2], "EMBEDDING" /*+
 
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
       LOB_BY_VALUE */ [VECTOR,32600]
   4 - "ID"[NUMBER,22], "EMBEDDING" /*+ LOB_BY_VALUE */ [VECTOR,32600],
       VECTOR_DISTANCE(VECTOR('[1,1]', *, *, * /*+  USEBLOBPCW_QVCGMD */ ), 
"EMB
EDDING" /*+
 
       LOB_BY_VALUE */ , COSINE)[BINARY_DOUBLE,8]
 
Query Block Registry:
---------------------
 
  SEL$1 (PARSER) [FINAL]
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
--
  SEL$2 (PARSER) [FINAL]
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Vectors in Distributed Database Tables
There is no new SQL syntax or keyword when creating sharded tables and duplicated tables
with vector columns in a Globally Distributed Database; however, there are some requirements
and restrictions to consider.

User Permissions

Only an all-shards user can create sharded and duplicated tables. You must connect to the
shard catalog as an all-shards user. Connecting to the shard catalog as an all-shards user
automatically enables SHARD DDL, and the DDL to create the tables is propagated to all the
shards in the distributed database.

Creating Sharded Tables with a Vector Column

• Sharded tables must be created on the catalog database with SHARD DDL enabled.

• A vector column cannot be part of the sharding key or the partitionset key.

• The CREATE SHARDED TABLE command is propagated to all of the shards by the shard
coordinator.

The syntax to create a sharded table with a vector column is same as the syntax to create a
non-sharded table with a vector column. The only difference is to include the SHARDED keyword
in the CREATE TABLE statement.

CREATE SHARDED TABLE REALTORS(
     REALTOR_ID NUMBER PRIMARY KEY,
     NAME VARCHAR2(20),
     IMAGE VECTOR,
     ZIPCODE VARCHAR2(40)) 
PARTITION BY CONSISTENT HASH(REALTOR_ID) 
TABLESPACE SET TS1; 

Creating Duplicated Tables with a Vector Column

• Duplicated tables must be created on the shard catalog database with SHARD DDL enabled.

The syntax to create a duplicated table with a vector column is same as the syntax to create a
non-sharded table with a vector column. The only difference is to include the DUPLICATED
keyword in the CREATE TABLE statement.

CREATE DUPLICATED TABLE PRODUCT_DESCRIPTIONS
     (
     PRODUCT_ID          NUMBER(6,0) NOT NULL,
     ORDER_ID            NUMBER(6,0) NOT NULL,
     LANGUAGE_ID         VARCHAR2(6 BYTE),
     TRANSLATED_NAME     NVARCHAR2(50),
     TRANSLATED_DESCRIPTION NVARCHAR2(2000),
     VECT4 VECTOR,
     VECT5 VECTOR,
     CONSTRAINT  PRODUCT_DESCRIPTIONS_PK primary key (PRODUCT_ID)
     ) tablespace products
     STORAGE (INITIAL 1M NEXT 1M);
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BINARY Vectors
In addition to FLOAT32 (the default format for comma-separated string representations of
vectors), FLOAT64, and INT8 dimension formats, you can also use the BINARY dimension
format.

A BINARY vector represents each dimension as a single bit (0 or 1). The following statement is
an example of declaring a 1024 dimension vector using the BINARY format:

VECTOR(1024, BINARY)

The main advantages of using the BINARY format are:

• The storage footprint of vectors can be reduced by a factor of 32 compared to the default
FLOAT32 format.

• Distance computations between two vectors are up to 40 times faster.

The downside of using the BINARY format is the potential loss of accuracy. However, the loss is
often not very substantial. BINARY vector accuracy is often greater than 90% compared to that
of FLOAT32 vectors. Several third-party providers have added embedding models that have the
ability to generate binary embeddings, including Cohere, Hugging Face, and Jina AI.

BINARY vectors are stored as packed UINT8 bytes (unsigned integer). This means that a single
byte represents exactly 8 BINARY dimensions and no less.

Note:

• The default distance metric for BINARY vectors is HAMMING.

• Conversions between BINARY vectors and any other dimension format are not
currently supported.

• A column can be declared as VECTOR(*, BINARY). In this case, '*' means that
vectors can have an arbitrary number of dimensions. However, because the
maximum possible number of dimensions supported is 65535 for other formats,
you cannot exceed a UINT8 array of size 8191 for a BINARY vector, which
represents 8191 * 8 = 65528 dimensions, the greatest multiple of 8 less than
65535.

• Oracle does not currently support using OML4Py to export BINARY models to
ONNX format and import them in the Oracle Database.

• Oracle Database server does not currently provide quantization techniques.
When applicable, this should be handled by the client.

The following is an example of a Cohere INT8 embedding and a UBINARY embedding. Note
when considering this example that Oracle Database server works with the data provided in
the VECTOR constructor as it is received. Any quantization logic necessary for processing the
data into binary format should be handled by the client. The example is provided to help in
understanding the concept.

INT8 Embedding of 1024 dimensions from Cohere embed-english-v3.0:
[25, 11, -99, -114, 13, -17, -59, 44, 65, 33, -50, -2, 28, -16, -6, -20, -33, 
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49, -59, -50, 0, -82, -67, 10, 82, -2, -126, -28, -32, -69, -13, 120, 54, 4, 
-71, 24, 4, -37, -57, 34, 16, -7, 27, -74, -12, 13, 1, -24, 65, -24, 28, 46, 
25, -33, -25, 36, 3, -47, 12, -49, -17, 11, 53, 70, -18, 10, -8, 4, 0, -33, 
10, -3, 27, -24, -35, -24, 23, -32, 0, -4, -21, -7, -29, -48, -7, -28, -25, 
-8, 54, -7, 14, -8, 39, 78, 0, -13, 26, 2, 40, 27, -35, -26, 5, -23, 15, 72, 
-4, -5, 33, 14, 18, 11, 0, -6, 6, -16, -53, 56, -35, 15, -1, -8, 83, 28, -2, 
27, -34, -60, 36, 4, 14, 21, -69, 17, -22, 0, 16, -77, 29, 27, 26, 0, 81, 15, 
-90, 7, 22, -2, -26, -39, -31, -10, 2, 32, -30, 40, -71, 29, 2, 36, -72, -6, 
42, -16, -16, 6, 40, 30, 1, -31, -42, 31, 56, 18, 0, 9, 27, 59, 11, 38, 28, 
-30, 73, -10, -56, 6, 17, 87, 15, 1, 49, -33, -68, 0, 10, -49, 18, -10, 8, 
12, 
52, -31, 7, -37, -25, -53, 9, -5, 72, 14, -37, -41, 30, -54, -60, 30, -62, 
20, 
3, 7, 64, -7, 48, 16, 19, 1, -43, -18, -91, -6, -113, 104, 42, 61, -24, -15, 
20, -9, 4, 36, 27, 46, -30, -39, 43, -14, 53, -36, -4, 35, 74, 37, 1, -19, 
62, 
12, -13, 8, -11, 21, -4, 96, 29, 17, -99, 2, -67, -32, -55, -8, 55, 16, -29, 
28, 47, 47, -77, 0, -24, 1, 1, 38, 28, -11, 2, -55, 4, 18, 42, 99, 98, 1, 17, 
18, -21, 4, 89, 66, -32, 17, 56, 14, -2, -45, 19, -30, 26, 14, 34, -36, 5, 
74, 
50, 33, 47, -37, 34, 61, -8, -62, 46, 56, -55, 0, 33, 5, -72, -29, -48, 21, 
40, 
22, 3, 39, -1, 10, 32, -47, 28, 19, 92, -5, -13, 2, 12, -21, -33, -9, 31, -2, 
-25, -20, -14, 1, 53, -34, -26, 17, 72, -35, -36, -26, -86, -20, 55, -4, -53, 
-14, 47, 26, 82, -3, -41, -18, -40, -94, 87, 3, -17, 38, 54, 17, 62, -23, 61, 
20, -4, 18, 37, 21, -37, -10, -43, -32, -40, -29, 43, 75, -44, -3, 47, 9, 
-10, 
29, -26, 55, 35, -17, 43, 37, -8, 19, 0, -32, -49, 43, -27, 16, -81, 34, 56, 
15, -33, -13, -30, -13, -28, 54, -61, -90, -45, -101, -52, -101, 5, 22, 7, 
72, 
-30, 31, 27, 42, -47, -6, -30, -30, 42, 13, -23, 63, -84, -20, -17, 61, -40, 
35, 37, 21, -8, 110, 108, 26, -49, -1, -31, 8, 10, 7, 29, -67, -29, 72, 15, 
11, 
4, -34, 12, 28, -48, -21, -81, 38, -29, 26, 4, 10, 29, -11, 26, -78, -51, 
-52, 
27, -92, -23, -5, -11, 31, 18, -33, -49, 7, -51, -35, -57, -14, 121, -8, 29, 
25, 
70, -19, 29, 48, -41, 48, -18, 19, -18, -13, 46, 27, 47, 42, 1, -33, 20, -27, 
8, 
-31, 31, 1, 0, 11, -4, 32, -65, -7, 9, -11, 15, 3, -34, 42, -15, -71, -5, 3, 
8, 
-8, 22, -7, -70, 10, 21, -127, -114, 13, -11, 46, -13, -10, -10, 29, -59, 43, 
-1, -17, -21, 8, -15, 12, 1, -73, -26, -5, 6, 37, 23, 46, 73, 14, -74, 84, 
-2, 
-22, -6, 5, -7, -26, 28, -39, -23, -22, 14, 38, 0, -2, 41, 27, -65, 30, 3, 
-23, 
53, 86, 35, -32, -48, -15, 32, 21, -26, -48, -26, 32, 32, 4, -70, -72, -62, 
-28, 
-14, -86, -10, -63, 44, -68, -41, 27, -52, 33, -56, -30, 5, 84, -54, 16, -22, 
-20, 16, 34, 14, -25, 8, -14, -13, -28, -40, 16, 41, -5, -88, -35, 55, -82, 
55, 
74, -55, -12, 58, 57, -83, -26, 55, 32, -6, 42, -14, 35, -5, -36, 84, -40, 
-29, 
7, -20, -17, 23, -20, -49, -48, 22, 49, -30, 35, 48, 5, 34, 17, 13, 30, 33, 
-38, 
-37, 10, -52, -24, 67, -15, -12, -3, -11, -46, -7, 32, 10, -46, 3, 18, -7, 
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-26, 
0, -40, 23, -46, 89, 37, 3, -29, -51, -32, 49, -51, 9, 16, -47, -26, 14, 10, 
14, 
-13, 11, 16, -18, 54, -24, 18, -14, -51, -89, -24, 20, 12, 2, 62, 13, 53, 
-22, 
2, 22, -14, 29, -9, 51, -42, -97, 28, 49, -4, -93, -17, -26, 46, 47, 33, -33, 
25, 81, -29, 5, 17, 24, 54, -10, -14, -2, 29, 17, -4, -47, 56, 4, 9, 30, -87, 
39, -16, 39, 67, -13, 37, 13, 67, 50, -16, -55, 8, 24, -50, -1, -36, -51, 
-20, 
-58, 11, -28, -22, -26, 16, 7, -17, 39, -9, -21, -9, -8, -18, 37, -47, -19, 
36, 
-8, 6, -39, 58, -26, -37, 11, 86, 33, 67, -35, 25, -11, -7, -22, 20, 14, 8, 
8, 
7, -30, -58, 37, -1, 16, -13, 89, -6, 81, -46, -37, -7, 9, -23, -11, -41, 
-13, 
18, -17, -4, -42, 0, 91, -128, 33, -18, -88, -84, -11, -62, 79, -34, -39, 54, 
-17, -14, 15, 79, -33, -4, 30, 5, 8, -55, -9, -38, 10, -41, 37, -5, 2, 62, 3, 
-5, -42, 17, -50, 14, -58, -16, 26, -20, -49, 52, 73, -42, 9, 7, -50, 14, 
-11, 
39, 0, -45, -90, -30, -16, -19, -6, -1, 43, -7, -47, -4, 40, -6, 5, 2, 2, 
-20, 
-40, 39, 10, -16, 64, -11, -36, -5, 37, -16, 49, 24, -20, 17, 27, -21, -49, 
-49, 
-38, -19, -31, -2, 15, 52, -68, -14, 20, 38, 10, -48, -2, -52, -60, -55, -30, 
37, -32, -80, 1, -1, -12, -45, 15, 29, 8, -46, -42, -28, -38, 11, 4, 19, 2, 
67, 
-44, -5, -28, 21, 17, -16, -34, 16, -6, 10, -11, 15, 2, 33, -25, -13, 8, -7, 
2, 
-22, 21, -41, 10, -29, -36, 46, 19, -41, 36, -39, 10, -23, -13, -2, -53, 39, 
-25, -4]
 
 
UBINARY Embedding from the same model (1024 dimensions = 128 packed UINT8 
bytes)
[201, 200, 65, 129, 217, 166, 185, 167, 90, 138, 0, 172, 242, 207, 165, 52, 
245, 
187, 96, 215, 39, 159, 250, 126, 107, 162, 201, 123, 193, 203, 202, 123, 87, 
67, 
113, 235, 253, 220, 187, 236, 220, 125, 185, 136, 102, 8, 224, 222, 220, 12, 
214, 
217, 92, 16, 61, 195, 69, 220, 121, 236, 94, 136, 100, 46, 212, 250, 189, 45, 
26, 
101, 20, 88, 253, 18, 51, 110, 49, 192, 37, 52, 232, 98, 204, 212, 146, 55, 
249, 
32, 108, 174, 44, 237, 67, 246, 166, 29, 188, 103, 173, 230, 4, 104, 37, 79, 
71, 
202, 162, 16, 160, 147, 56, 174, 82, 109, 96, 34, 230, 139, 96, 51, 129, 35, 
135, 
198, 87, 42, 154, 132]

The BINARY vector is generated through a binary quantization mechanism using the following
rule:

• If the INT8 dimension value > 0, the BINARY dimension value is 1

• If the INT8 dimension value <= 0, the BINARY dimension format is 0

Chapter 5
Create Tables Using the VECTOR Data Type

5-16



Consider the first 8 INT8 dimensions from the preceding example:

[25, 11, -99, -114, 13, -17, -59, 44]

In BINARY, this translates to:

[1, 1, 0, 0, 1, 0, 0, 1]

Representing this as a UINT8 byte makes it 201, which is the first byte value of the packed
UINT8 representation. So, each BINARY vector can therefore be inserted as a UINT8 array
whose size is: number of BINARY vector dimensions/8.

Note:

BINARY vectors are only supported with a number of dimensions that is a multiple of
8.

The following is an example of an invalid declaration of a BINARY vector column, due to the fact
that the vector dimension, 12, is not divisible by 8:

CREATE TABLE vectab (id NUMBER, data VECTOR(12, BINARY));

Result:

CREATE TABLE vectab (id NUMBER, data VECTOR(12, BINARY))
                                                *
ERROR at line 1:
ORA-51813: Vector of BINARY format should have a dimension count that is a 
multiple of 8.

The following statements are an example of a valid table creation with a BINARY vector column
and a valid insert (string representation):

CREATE TABLE vectab(id NUMBER, data VECTOR(16, BINARY));
INSERT INTO vectab VALUES (1, '[201, 15]');
SELECT data FROM vectab;

Result:

DATA
---------
[201,15]

These next statements are examples of invalid inserts (string representation):

SQL> INSERT INTO vectab VALUES (1, '[201]');
INSERT INTO vectab VALUES (1, '[201]')
                              *
ERROR at line 1:
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ORA-51803: Vector dimension count must match the dimension count specified in
the column definition (actual: 8, required: 16).

SQL> INSERT INTO vectab VALUES (1, '[201, 15, 123]');
INSERT INTO vectab VALUES (1, '[201, 15, 123]')
                              *
ERROR at line 1:
ORA-51803: Vector dimension count must match the dimension count specified in
the column definition (actual: 24, required: 16).

SQL> INSERT INTO vectab VALUES (1, '[256, 15]');
INSERT INTO vectab VALUES (1, '[256, 15]')
                              *
ERROR at line 1:
ORA-51806: Vector column is not properly formatted (dimension value 1 is
outside the allowed precision range).

SPARSE Vectors
The storage format of a vector can be specified as SPARSE or DENSE. Sparse vectors are
vectors that typically have a large number of dimensions but with very few non-zero dimension
values, while Dense vectors are vectors where every dimension stores a value, including zero-
values.

Sparse vectors can be generated by Sparse Encoding models such as SPLADE or BM25.
Generally speaking, sparse models such as SPLADE outperform dense models, such as
BERT and All-MiniLM, in keyword awareness search. They are also widely used for Hybrid
Vector Search by combining sparse and dense vectors.

Conceptually, a sparse vector can be thought of as a vector where every dimension
corresponds to a keyword in a certain vocabulary. For a given document, the sparse vector
contains non-zero dimension values representing the number of occurrences for the keywords
within that document. For example, BERT has a vocabulary size of 30,522 and several sparse
encoders generate vectors of this dimensionality.

Representing a dense vector with 30,522 dimensions with only 100 non-zero FLOAT32
dimension values would still require 30,522 * 4 = ~120KB of storage. Such a format takes up a
lot of space for no reason as most of the dimension values are 0. This would cause a huge
performance deficit compared to the SPARSE representation of such vectors.

That is why when using SPARSE vectors, only the non-zero dimension values are physically
stored.

Here is an example of creating and inserting a SPARSE vector:

DROP TABLE my_sparse_tab PURGE;
CREATE TABLE my_sparse_tab (v01 VECTOR(5, INT8, SPARSE));

INSERT INTO my_sparse_tab VALUES('[5,[2,4],[10,20]]');
INSERT INTO my_sparse_tab VALUES('[[2,4],[10,20]]');

SELECT * FROM my_sparse_tab;

V01
--------------------
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[5,[2,4],[10,20]]
[5,[2,4],[10,20]]

You can see the difference between the SPARSE textual form within the INSERT statement with
the one used for a DENSE vector. The SPARSE textual form looks like:

'[Total Dimension Count, [Dimension Index Array], [Dimension Value Array]]'
The example uses the number of dimensions in total (5 here but it is optional to specify it in this
case as it is defined in the column's declaration), then gives the list of coordinates that have
non-zero values, then the list of the corresponding values. In this example, coordinate 2 has
the value 10 and coordinate 4 has the value 20. Coordinates 1, 3, and 5 have the value 0.

It is not permitted to use a DENSE textual form for SPARSE vectors and vice versa. However, it is
possible to use vector functions to transform one into the other as illustrated in the following
sample code using the table my_sparse_tab (created in the previous snippet):

The following INSERT statement fails:

INSERT INTO my_sparse_tab VALUES('[0, 10, 0, 20, 0]');

Error starting at line : 1 in command -
INSERT INTO my_sparse_tab VALUES ('[0,10,0,20,0]')
Error at Command Line : 1 Column : 33
Error report -
SQL Error: ORA-51833: Textual input conversion between sparse and dense 
vector is not
supported.

However, this insertion works:

INSERT INTO my_sparse_tab VALUES (TO_VECTOR('[0,0,10,0,20]', 5, INT8, DENSE));

SELECT * FROM my_sparse_tab;

V01
____________________
[5,[2,4],[10,20]]
[5,[2,4],[10,20]]
[5,[3,5],[10,20]]

You can also transform a SPARSE vector into a DENSE textual form if needed and vice versa:

SELECT FROM_VECTOR(v01 RETURNING CLOB FORMAT DENSE) 
FROM my_sparse_tab 
WHERE ROWNUM<2;

FROM_VECTOR(V01RETURNINGCLOBFORMATDENSE)
___________________________________________
[0,10,0,20,0]
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Note:

The RETURNING clause used in the preceding example can also return a VARCHAR2 or
a BLOB.

Insert Vectors in a Database Table Using the INSERT Statement
Once you create a table with a VECTOR data type column, you can directly insert vectors into the
table using the INSERT statement.

The following examples assume you have already created vectors and know their values.

Here is a simple example:

DROP TABLE galaxies PURGE;
CREATE TABLE galaxies (id NUMBER, name VARCHAR2(50), doc VARCHAR2(500), 
embedding VECTOR);

INSERT INTO galaxies VALUES (1, 'M31', 'Messier 31 is a barred spiral galaxy 
in the Andromeda constellation which has a lot of barred spiral galaxies.', 
'[0,2,2,0,0]');
INSERT INTO galaxies VALUES (2, 'M33', 'Messier 33 is a spiral galaxy in the 
Triangulum constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (3, 'M58', 'Messier 58 is an intermediate barred 
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
INSERT INTO galaxies VALUES (4, 'M63', 'Messier 63 is a spiral galaxy in the 
Canes Venatici constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (5, 'M77', 'Messier 77 is a barred spiral galaxy 
in the Cetus constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (6, 'M91', 'Messier 91 is a barred spiral galaxy 
in the Coma Berenices constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (7, 'M49', 'Messier 49 is a giant elliptical 
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
INSERT INTO galaxies VALUES (8, 'M60', 'Messier 60 is an elliptical galaxy in 
the Virgo constellation.', '[0,0,0,0,1]');
INSERT INTO galaxies VALUES (9, 'NGC1073', 'NGC 1073 is a barred spiral 
galaxy in Cetus constellation.', '[0,1,1,0,0]');
COMMIT;

Here is a more sophisticated example:

DROP TABLE doc_queries PURGE;
CREATE TABLE doc_queries (id NUMBER, query VARCHAR2(500), embedding VECTOR);

DECLARE
  e CLOB;
BEGIN
e:= 
'[-7.73346797E-002,1.09683955E-002,4.68435362E-002,2.57333983E-002,6.95586428E
-00'||
'2,-2.43412293E-002,-7.25011379E-002,6.66433945E-002,3.78751606E-002,-2.223544
75E'||
'-002,3.02388351E-002,9.36625451E-002,-1.65204913E-003,3.50606232E-003,-5.4773
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859'||
'7E-002,-7.5879097E-002,-2.72218436E-002,7.01764375E-002,-1.32512336E-003,3.14
728'||
'022E-002,-1.39147148E-001,-7.52705336E-002,2.62449421E-002,1.91645715E-002,4.
055'||
'73137E-002,5.83701171E-002,-3.26474942E-002,2.0509012E-002,-3.81141738E-003,-
7.1'||
'8656182E-002,-1.95893757E-002,-2.56917924E-002,-6.57705888E-002,-4.39117625E-
002'||
',-6.82357177E-002,1.26592368E-001,-3.46683599E-002,1.07687116E-001,-3.9695449
2E-'||
'002,-9.06721968E-003,-2.4109887E-002,-1.29214963E-002,-4.82468568E-002,-3.872
307'||
'76E-002,5.13443872E-002,-1.40985977E-002,-1.87066793E-002,-1.11725368E-002,9.
367'||
'76772E-002,-6.39425665E-002,3.13162468E-002,8.61801133E-002,-5.5481784E-002,4
.13'||
'125418E-002,2.0447813E-002,5.03717586E-002,-1.73418857E-002,3.94522659E-002,-
7.2'||
'6833269E-002,3.13266069E-002,1.2377765E-002,7.64856935E-002,-3.77447419E-002,
-6.'||
'41075056E-003,1.1455299E-001,1.75497644E-002,4.64923214E-003,1.89623125E-002,
9.1'||
'3506597E-002,-8.22509527E-002,-1.28537193E-002,1.495138E-002,-3.22528258E-002
,-4'||
'.71280375E-003,-3.15563753E-003,2.20409594E-002,7.77796134E-002,-1.927099E-00
2,-'||
'1.24283969E-001,4.69769612E-002,1.78121701E-002,1.67152807E-002,-3.83916795E-
002'||
',-1.51029453E-002,2.10864041E-002,6.86845928E-002,-7.4719809E-002,1.17681816E
-00'||
'3,3.93113159E-002,6.04066066E-002,8.55340436E-002,3.68878953E-002,2.41579115E
-00'||
'2,-5.92489541E-002,-1.21883564E-002,-1.77226216E-002,-1.96259264E-002,8.51236
377'||
'E-003,1.43039867E-001,2.62829307E-002,2.96348184E-002,1.92485824E-002,7.66567
141'||
'E-002,-1.18600562E-001,3.01779062E-002,-5.88010997E-002,7.07774982E-002,-6.60
426'||
'617E-002,6.44619241E-002,1.29240509E-002,-2.51785964E-002,2.20869959E-004,-2.
514'||
'38171E-002,5.52265197E-002,8.65883753E-002,-1.83726232E-002,-8.13263431E-002,
1.1'||
'6624301E-002,1.63392909E-002,-3.54643688E-002,2.05128491E-002,4.67337575E-003
,1.'||
'20488718E-001,-4.89500947E-002,-3.80397178E-002,6.06209273E-003,-1.37961926E-
002'||
',4.68355882E-031,3.35873142E-002,6.20040558E-002,2.13472452E-002,-1.87379227E
-00'||
'3,-5.83158981E-004,-4.04266678E-002,2.40761992E-002,-1.93725452E-002,9.376372
4E-'||
'002,-3.02913114E-002,7.67844869E-003,6.11112304E-002,6.02455214E-002,-6.38855
845'||
'E-002,-8.03523697E-003,2.08786246E-003,-7.45898336E-002,8.74964818E-002,-5.02
371'||
'937E-002,-4.99385223E-003,3.37120108E-002,8.99377018E-002,1.09540671E-001,5.8
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501'||
'102E-002,1.71627291E-002,-3.26152593E-002,8.36912021E-002,5.05600758E-002,-9.
737'||
'63615E-002,-1.40264994E-002,-2.07926836E-002,-4.20163684E-002,-5.97197041E-00
2,1'||
'.32461395E-002,2.26361351E-003,8.1473738E-002,-4.29272018E-002,-3.86809185E-0
02,'||
'-8.24682564E-002,-3.89646105E-002,1.9992901E-002,2.07321253E-002,-1.74706057E
-00'||
'2,4.50415723E-003,4.43851873E-002,-9.86309871E-002,-7.68082142E-002,-4.538143
05E'||
'-003,-8.90906602E-002,-4.54972908E-002,-5.71065396E-002,2.10020249E-003,1.224
947'||
'07E-002,-6.70659095E-002,-6.52298108E-002,3.92126441E-002,4.33384106E-002,4.3
899'||
'6181E-002,5.78813367E-002,2.95345876E-002,4.68395352E-002,9.15119275E-002,-9.
629'||
'58392E-003,-5.96637605E-003,1.58674959E-002,-6.74034096E-003,-6.00510836E-002
,2.'||
'67188111E-003,-1.10706768E-003,-6.34015873E-002,-4.80389707E-002,6.84534572E-
003'||
',-1.1547043E-002,-3.44865513E-003,1.18979132E-002,-4.31232266E-002,-5.9022788
E-0'||
'02,4.87607308E-002,3.95954074E-003,-7.95252472E-002,-1.82770658E-002,1.182642
49E'||
'-002,-3.79164703E-002,3.87993976E-002,1.09805465E-002,2.29136664E-002,-7.2278
082'||
'4E-002,-5.31538352E-002,6.38669729E-002,-2.47980515E-003,-9.6999377E-002,-3.7
566'||
'7699E-002,4.06541862E-002,-1.69874367E-003,5.58868013E-002,-1.80723771E-033,-
6.6'||
'5985467E-003,-4.45010923E-002,1.77929532E-002,-4.8369132E-002,-1.49722975E-00
2,-'||
'3.97582203E-002,-7.05247298E-002,3.89178023E-002,-8.26886389E-003,-3.91006246
E-0'||
'02,-7.02963024E-002,-3.91333885E-002,1.76661201E-002,-5.09723537E-002,2.37749
107'||
'E-002,-1.83419678E-002,-1.2693027E-002,-1.14232123E-001,-6.68751821E-002,7.52
167'||
'869E-003,-9.94713791E-003,6.03599809E-002,6.61353692E-002,3.70595567E-002,-2.
019'||
'52495E-002,-2.40410417E-002,-3.36526595E-002,6.20064288E-002,5.50279953E-002,
-2.'||
'68641673E-002,4.35859226E-002,-4.57317568E-002,2.76936609E-002,7.88119733E-00
2,-'||
'4.78852056E-002,1.08523415E-002,-6.43479973E-002,2.0192951E-002,-2.09538229E-
002'||
',-2.2202393E-002,-1.0728148E-003,-3.09607089E-002,-1.67067181E-002,-6.0357227
9E-'||
'002,-1.58187654E-002,3.45828459E-002,-3.45360823E-002,-4.4002533E-003,1.77463
517'||
'E-002,6.68234832E-004,6.14458732E-002,-5.07084019E-002,-1.21073434E-002,4.195
981'||
'85E-002,3.69152687E-002,1.09461844E-002,1.83413982E-001,-3.89185362E-002,-5.1
846'||
'0497E-002,-8.71620141E-003,-1.17692262E-001,4.04785499E-002,1.07505821E-001,1
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.41'||
'624091E-002,-2.57720836E-002,2.6652012E-002,-4.50568087E-002,-3.34110335E-002
,-1'||
'.11387551E-001,-1.29796984E-003,-6.51671961E-002,5.36890551E-002,1.0702607E-0
01,'||
'-2.34011523E-002,3.97406481E-002,-1.01149324E-002,-9.95831117E-002,-4.4019784
8E-'||
'002,6.88989647E-003,4.85475454E-003,-3.94048765E-002,-3.6099229E-002,-5.40755
13E'||
'-002,8.58292207E-002,1.0697281E-002,-4.70785573E-002,-2.96272673E-002,-9.4919
120'||
'9E-003,1.57316476E-002,-5.4926388E-002,6.49022609E-002,2.55531631E-002,-1.839
057'||
'17E-002,4.06873561E-002,4.74951901E-002,-1.22502812E-033,-4.6441108E-002,3.74
079'||
'868E-002,9.14599106E-004,6.09740615E-002,-7.67391697E-002,-6.32521287E-002,-2
.17'||
'353106E-002,2.45231949E-003,1.50869079E-002,-4.96984981E-002,-3.40828523E-002
,8.'||
'09691194E-003,3.31339166E-002,5.41345142E-002,-1.16213948E-001,-2.49572527E-0
02,'||
'5.00682592E-002,5.90037219E-002,-2.89178211E-002,8.01460445E-003,-3.41945067E
-00'||
'2,-8.60121697E-002,-6.20261126E-004,2.26721354E-002,1.28968194E-001,2.8765536
8E-'||
'002,-2.20255274E-002,2.7228903E-002,-1.12029864E-002,-3.20301466E-002,4.98079
099'||
'E-002,2.89051589E-002,2.413591E-002,3.64605561E-002,6.26017479E-003,6.5463289
6E-'||
'002,1.11282602E-001,-3.60428065E-004,1.95987038E-002,6.16615731E-003,5.935930
46E'||
'-002,1.50377362E-003,2.95319762E-002,2.56325547E-002,-1.72190219E-002,-6.5816
819'||
'7E-002,-4.08149995E-002,2.7983617E-002,-6.80195764E-002,-3.52494679E-002,-2.9
840'||
'0577E-002,-3.04043181E-002,-1.9352382E-002,5.49411364E-002,8.74160081E-002,5.
614'||
'25127E-002,-5.60747795E-002,-3.43311466E-002,9.83581021E-002,2.01142877E-002,
1.3'||
'193069E-002,-3.22583504E-002,8.54402035E-002,-2.20514946E-002]';

INSERT INTO doc_queries VALUES (13, 'different methods of backup and 
recovery', e);
COMMIT;
END;
/

You can also create a table that holds BINARY vectors:

DROP TABLE my_bin_tab PURGE;
CREATE TABLE my_bin_tab(id NUMBER, data VECTOR(16, BINARY));

INSERT INTO my_bin_tab VALUES (1, '[201, 15]');
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Here's an additional example demonstrating the insertion of SPARSE vectors into a table:

DROP TABLE my_sparse_tab PURGE;
CREATE TABLE my_sparse_tab(v01 VECTOR(5, INT8, SPARSE));

INSERT INTO my_sparse_tab VALUES ('[5,[2,4],[10,20]]');
INSERT INTO my_sparse_tab VALUES ('[[2,4],[10,20]]');

You can also generate vectors by calling services outside the database or generate vectors
directly from within the database after you have imported pretrained embedding models.

If you have already loaded an embedding model into the database, called, let's say, MyModel,
you can insert vectors using the VECTOR_EMBEDDING function. For example:

INSERT INTO doc_queries VALUES (13, 'different methods of backup and 
recovery', 
  vector_embedding(MyModel using 'different methods of backup and recovery' 
as data));”

See Also:

• Import Pretrained Models in ONNX Format

• Convert Text String to Embedding Within Oracle Database

Load Vector Data Using SQL*Loader
Use these examples to understand how you can load character and binary vector data.

SQL*Loader supports loading VECTOR columns from character data and binary floating point
array fvec files. The format for fvec files is that each binary 32-bit floating point array is
preceded by a four (4) byte value, which is the number of elements in the vector. There can be
multiple vectors in the file, possibly with different dimensions. Export and import of a table with
vector datatype columns is supported in all the modes ( FULL, SCHEMA, TABLES) using all
the available methods (access_method=direct_path, access_method=external_table,
access_method=automatic ) for unloading/loading data.

• Load Character Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load vector data into a five-
dimension vector space.

• Load Binary Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load binary vector data files.

Load Character Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load vector data into a five-dimension
vector space.

Let's imagine we have the following text documents classifying galaxies by their types:
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• DOC1: "Messier 31 is a barred spiral galaxy in the Andromeda constellation which has a
lot of barred spiral galaxies."

• DOC2: "Messier 33 is a spiral galaxy in the Triangulum constellation."

• DOC3: "Messier 58 is an intermediate barred spiral galaxy in the Virgo constellation."

• DOC4: "Messier 63 is a spiral galaxy in the Canes Venatici constellation."

• DOC5: "Messier 77 is a barred spiral galaxy in the Cetus constellation."

• DOC6: "Messier 91 is a barred spiral galaxy in the Coma Berenices constellation."

• DOC7: "NGC 1073 is a barred spiral galaxy in Cetus constellation."

• DOC8: "Messier 49 is a giant elliptical galaxy in the Virgo constellation."

• DOC9: "Messier 60 is an elliptical galaxy in the Virgo constellation."

You can create vectors representing the preceding galaxy's classes using the following five-
dimension vector space based on the count of important words appearing in each document:

Table 5-1    Five dimension vector space

Galaxy
Classes

Intermediate Barred Spiral Giant Elliptical

M31 0 2 2 0 0

M33 0 0 1 0 0

M58 1 1 1 0 0

M63 0 0 1 0 0

M77 0 1 1 0 0

M91 0 1 1 0 0

M49 0 0 0 1 1

M60 0 0 0 0 1

NGC1073 0 1 1 0 0

This naturally gives you the following vectors:

• M31: [0,2,2,0,0]
• M33: [0,0,1,0,0]
• M58: [1,1,1,0,0]
• M63: [0,0,1,0,0]
• M77: [0,1,1,0,0]
• M91: [0,1,1,0,0]
• M49: [0,0,0,1,1]
• M60: [0,0,0,0,1]
• NGC1073: [0,1,1,0,0]
You can use SQL*Loader to load this data into the GALAXIES database table defined as:

drop table galaxies purge;
create table galaxies (id number, name varchar2(50), doc varchar2(500), 
embedding vector);
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Based on the data described previously, you can create the following galaxies_vec.csv file:

1:M31:Messier 31 is a barred spiral galaxy in the Andromeda constellation 
which has a lot of barred spiral galaxies.:[0,2,2,0,0]:
2:M33:Messier 33 is a spiral galaxy in the Triangulum constellation.:
[0,0,1,0,0]:
3:M58:Messier 58 is an intermediate barred spiral galaxy in the Virgo 
constellation.:[1,1,1,0,0]:
4:M63:Messier 63 is a spiral galaxy in the Canes Venatici constellation.:
[0,0,1,0,0]:
5:M77:Messier 77 is a barred spiral galaxy in the Cetus constellation.:
[0,1,1,0,0]:
6:M91:Messier 91 is a barred spiral galaxy in the Coma Berenices 
constellation.:[0,1,1,0,0]:
7:M49:Messier 49 is a giant elliptical galaxy in the Virgo constellation.:
[0,0,0,1,1]:
8:M60:Messier 60 is an elliptical galaxy in the Virgo constellation.:
[0,0,0,0,1]:
9:NGC1073:NGC 1073 is a barred spiral galaxy in Cetus constellation.:
[0,1,1,0,0]:

Here is a possible SQL*Loader control file galaxies_vec.ctl:

recoverable
LOAD DATA
infile 'galaxies_vec.csv'
INTO TABLE galaxies
fields terminated by ':'
trailing nullcols
(
id,
name char (50),
doc  char (500),
embedding char (32000)
)

Note:

You cannot use comma-delimited vectors (vectors separated by commas) as the field
terminator in your CSV file. You must use another deliminator. In these examples the
deliminator is a colon (:).

After you have created the two files galaxies_vec.csv and galaxies_vec.ctl, you can
run the following sequence of instructions directly from your favorite SQL command line tool:

host sqlldr vector/vector@CDB1_PDB1 control=galaxies_vec.ctl 
log=galaxies_vec.log

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Jan 11 19:46:21 2024
Version 23.4.0.23.00

Copyright (c) 1982, 2024, Oracle and/or its affiliates.  All rights reserved.
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Path used:      Conventional
Commit point reached - logical record count 10

Table GALAXIES2:
  9 Rows successfully loaded.

Check the log file:
  galaxies_vec.log
for more information about the load.

SQL>

select * from galaxies;

 ID NAME    DOC                                                        
EMBEDDING
--- ------  ---------------------------------------------------------- 
---------------------------------
  1 M31     Messier 31 is a barred spiral galaxy in the Andromeda ... 
[0,2.0E+000,2.0E+000,0,0]
  2 M33     Messier 33 is a spiral galaxy in the Triangulum ...       
[0,0,1.0E+000,0,0]
  3 M58     Messier 58 is an intermediate barred spiral galaxy ...    
[1.0E+000,1.0E+000,1.0E+000,0,0]
  4 M63     Messier 63 is a spiral galaxy in the Canes Venatici ...   
[0,0,1.0E+000,0,0]
  5 M77     Messier 77 is a barred spiral galaxy in the Cetus ...     
[0,1.0E+000,1.0E+000,0,0]
  6 M91     Messier 91 is a barred spiral galaxy in the Coma ...      
[0,1.0E+000,1.0E+000,0,0]
  7 M49     Messier 49 is a giant elliptical galaxy in the Virgo ...  
[0,0,0,1.0E+000,1.0E+000]
  8 M60     Messier 60 is an elliptical galaxy in the Virgo ...       
[0,0,0,0,1.0E+000]
  9 NGC1073 NGC 1073 is a barred spiral galaxy in Cetus ...           
[0,1.0E+000,1.0E+000,0,0]

9 rows selected.

SQL>

Here is the resulting log file for this load (galaxies_vec.log):

cat galaxies_vec.log

SQL*Loader: Release 23.0.0.0.0 - Development on Thu Jan 11 19:46:21 2024
Version 23.4.0.23.00

Copyright (c) 1982, 2024, Oracle and/or its affiliates.  All rights reserved.

Control File:   galaxies_vec.ctl
Data File:      galaxies_vec.csv
  Bad File:     galaxies_vec.bad
  Discard File:  none specified
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 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array:     250 rows, maximum of 1048576 bytes
Continuation:    none specified
Path used:      Conventional

Table GALAXIES, loaded from every logical record.
Insert option in effect for this table: INSERT
TRAILING NULLCOLS option in effect

Column Name   Position   Len  Term Encl Datatype
----------- ---------- ----- ---- ---- ----------
ID               FIRST     *   :       CHARACTER            
NAME              NEXT    50   :       CHARACTER            
DOC               NEXT   500   :       CHARACTER            
EMBEDDING         NEXT 32000   :       CHARACTER            

value used for ROWS parameter changed from 250 to 31

Table GALAXIES2:
  9 Rows successfully loaded.
  0 Rows not loaded due to data errors.
  0 Rows not loaded because all WHEN clauses were failed.

Space allocated for bind array:                1017234 bytes(31 rows)
Read   buffer bytes: 1048576

Total logical records skipped:          0
Total logical records read:             9
Total logical records rejected:         0
Total logical records discarded:        1

Run began on Thu Jan 11 19:46:21 2024
Run ended on Thu Jan 11 19:46:24 2024

Elapsed time was:     00:00:02.43
CPU time was:         00:00:00.03
$

Note:

This example uses embedding char (32000) vectors. For very large vectors, you can
use the LOBFILE feature

Related Topics

• Loading LOB Data from LOBFILEs
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Load Binary Vector Data Using SQL*Loader Example
In this example, you can see how to use SQL*Loader to load binary vector data files.

The vectors in a binary (fvec) file are stored in raw 32-bit Little Endian format.

Each vector takes 4+d*4 bytes for the .fvecs file where the first 4 bytes indicate the
dimensionality (d) of the vector (that is, the number of dimensions in the vector) followed by
d*4 bytes representing the vector data, as described in the following table:

Table 5-2    Fields for Vector Dimensions and Components

Field Field Type Description

d int The vector dimension

components array of floats The vector components

For binary fvec files, they must be defined as follows:

• You must specify LOBFILE.

• You must specify the syntax format fvecs to indicate that the dafafile contains binary
dimensions.

• You must specify that the datafile contains raw binary data (raw).

The following is an example of a control file used to load VECTOR columns from binary floating
point arrays using the galaxies vector example described in Understand Hierarchical Navigable
Small World Indexes, but in this case importing fvecs data, using the control file syntax format
"fvecs":

Note:

SQL*Loader supports loading VECTOR columns from character data and binary
floating point array fvec files. The format for fvec files is that each binary 32-bit
floating point array is preceded by a four (4) byte value, which is the number of
elements in the vector. There can be multiple vectors  in the file, possibly with
different dimensions.

LOAD DATA
infile 'galaxies_vec.csv'
INTO TABLE galaxies
fields terminated by ':'
trailing nullcols
(
id,
name char (50),
doc  char (500),
embedding lobfile (constant '/u01/data/vector/embedding.fvecs' format 
"fvecs")  raw
)
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The data contained in galaxies_vec.csv in this case does not have the vector data. Instead,
the vector data will be read from the secondary LOBFILE in the /u01/data/vector directory
(/u01/data/vector/embedding.fvecs), which contains the same information in float32
floating point binary numbers, but is in fvecs format:

1:M31:Messier 31 is a barred spiral galaxy in the Andromeda constellation 
which has a lot of barred spiral galaxies.:
2:M33:Messier 33 is a spiral galaxy in the Triangulum constellation.:
3:M58:Messier 58 is an intermediate barred spiral galaxy in the Virgo 
constellation.:
4:M63:Messier 63 is a spiral galaxy in the Canes Venatici constellation.:
5:M77:Messier 77 is a barred spiral galaxy in the Cetus constellation.:
6:M91:Messier 91 is a barred spiral galaxy in the Coma Berenices 
constellation.:
7:M49:Messier 49 is a giant elliptical galaxy in the Virgo constellation.:
8:M60:Messier 60 is an elliptical galaxy in the Virgo constellation.:
9:NGC1073:NGC 1073 is a barred spiral galaxy in Cetus constellation.:

Unload and Load Vectors Using Oracle Data Pump
Starting with Oracle Database 23ai, Oracle Data Pump enables you to use multiple
components to load and unload vectors to databases.

Oracle Data Pump technology enables very high-speed movement of data and metadata from
one database to another. Oracle Data Pump is made up of three distinct components:
Command-line clients, expdp and impdp; the DBMS_DATAPUMP PL/SQL package (also
known as the Data Pump API); and the DBMS_METADATA PL/SQL package (also known as
the Metadata API).

Unloading and Loading a table with vector datatype columns is supported in all modes (FULL,
SCHEMA, TABLES) using all the available access methods (DIRECT_PATH, EXTERNAL_TABLE,
AUTOMATIC, INSERT_AS_SELECT).

Examples Vector Export and Import Syntax

expdp <username>/<password>@<Database-instance-TNS-alias>  dumpfile=<dumpfile-
name>.dmp directory=<directory-name> full=y metrics=y 
access_method=direct_path

expdp <username>/<password>@<Database-instance-TNS-alias>  dumpfile=<dumpfile-
name>.dmp directory=<directory-name> schemas=<schema-name> metrics=y 
access_method=external_table

expdp <username>/<password>@<Database-instance-TNS-alias>  dumpfile=<dumpfile-
name>.dmp directory=<directory-name> tables=<schema-name>.<table-name> 
metrics=y access_method=direct_path

impdp <username>/<password>@<Database-instance-TNS-alias>  dumpfile=<dumpfile-
name>.dmp directory=<directory-name> metrics=y access_method=direct_path
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Note:

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can only be used with the
EXTERNAL_TABLE access method.

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can load VECTOR column data into a
VARCHAR2 column if the conversion can fit into that VARCHAR2.

• TABLE_EXISTS_ACTION=APPEND | TRUNCATE can only load a VECTOR column with
the source VECTOR data dimasion that matches that loaded VECTOR column's
dimension. If the dimension does not match, then an error is raised.

• TABLE_EXISTS_ACTION=REPLACE supports any access method.

• It is not possible to use a the transportable tablespace mode with vector indexes.
However, this mode supports tables with the VECTOR datatype.

Related Topics

• Overview of Oracle Data Pump

• DBMS_DATAPUMP

• DBMS_METADATA
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6
Create Vector Indexes and Hybrid Vector
Indexes

Depending on whether to use similarity search or hybrid search, you can create either a vector
index or a hybrid vector index.

Vector indexes are a class of specialized indexing data structures that are designed to
accelerate similarity searches using high-dimensional vectors. They use techniques such as
clustering, partitioning, and neighbor graphs to group vectors representing similar items, which
drastically reduces the search space, thereby making the search process extremely efficient.
Create vector indexes on your vector embeddings to use these indexes for running similarity
searches over huge vector spaces.

Hybrid vector indexes leverage the existing Oracle Text indexing data structures and vector
indexing data structures. Such indexes can provide more relevant search results by integrating
the keyword matching capabilities of text search with the semantic precision of vector search.
Create hybrid vector indexes directly on your input data or on your vector embeddings to use
these indexes for performing a combination of full-text search and similarity search.

• Size the Vector Pool
To allow vector index creation, you must enable a new memory area stored in the SGA
called the Vector Pool.

• Manage the Different Categories of Vector Indexes

• Manage Hybrid Vector Indexes
Learn how to manage a hybrid vector index, which is a single index for searching by
similarity and keywords, to enhance the accuracy of your search results.

• Vector Indexes in a Globally Distributed Database
Inverted File Flat (IVF) index and Hierarchical Navigable Small World (HNSW) index are
supported on sharded tables in a distributed database; however there are some
considerations.

Size the Vector Pool
To allow vector index creation, you must enable a new memory area stored in the SGA called
the Vector Pool.

The Vector Pool is a memory allocated in SGA to store Hierarchical Navigable Small World
(HNSW) vector indexes and all associated metadata. It is also used to speed up Inverted File
Flat (IVF) index creation as well as DML operations on base tables with IVF indexes.

Note:

IVF centroid vectors are stored in the shared pool if they don't fit in the vector pool.

Enabling a Vector Pool is illustrated in the following diagram:
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Figure 6-1    Vector Pool

To size the Vector Pool in an on-premises environment, use the VECTOR_MEMORY_SIZE
initialization parameter. You can dynamically modify this parameter at the following levels:

• At the CDB level VECTOR_MEMORY_SIZE specifies the current size of the Vector Pool.
Reducing the parameter value will fail if there is current vector usage.

• At the PDB level VECTOR_MEMORY_SIZE specifies the maximum Vector Pool usage
allowed by a PDB. Reducing the parameter value will be allowed even if current vector
usage exceeds the new quota.

You can change the value of a parameter in a parameter file in the following ways:

• By editing an initialization parameter file. In most cases, the new value takes effect the
next time you start an instance of the database.

• By issuing an ALTER SYSTEM SET ... SCOPE=SPFILE statement to update a server
parameter file.

• By issuing an ALTER SYSTEM RESET statement to clear an initialization parameter value and
set it back to its default value.

Here is an example of how to change the value for VECTOR_MEMORY_SIZE at the PDB level if you
are using an SPFILE:

SQL> show con_name
CON_NAME
------------------------------
MYPDB1
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SQL> show user
USER is "SYS"

SQL> show parameter vector_memory_size
NAME               TYPE        VALUE
------------------ ----------- -----
vector_memory_size big integer 500M

SQL> SELECT ISPDB_MODIFIABLE
  2  FROM   V$SYSTEM_PARAMETER
  3* WHERE  NAME='vector_memory_size';

ISPDB_MODIFIABLE
___________________
TRUE

SQL> ALTER SYSTEM SET vector_memory_size=1G SCOPE=BOTH;

System altered.

SQL> show parameter vector_memory_size

NAME                TYPE        VALUE
------------------- ----------- -------
vector_memory_size  big integer 1G
SQL>

For more information about changing initialization parameter values, see Managing
Initialization Parameters Using a Server Parameter File.

If VECTOR_MEMORY_SIZE is set to 1 and the sga_target is greater than 0 at CDB initialization,
HNSW index creation will automatically grow the vector memory pool to satisfy the new index.
The maximum PDB VECTOR_MEMORY_SIZE value is limited to 70% of the PDB sga_target.
Dropping an HNSW index shrinks the vector memory pool accordingly.

In this configuration, where the vector memory pool grows automatically, the PDB
VECTOR_MEMORY_SIZE value will default to 0 and cannot be changed using the ALTER SYSTEM
command. Changes in vector pool size as a result of automatic growth are not persisted to the
spfile, so when the database is restarted, the vector pool size is reset.

You can query the V$VECTOR_MEMORY_POOL view to monitor the Vector Pool.

Note:

To roughly determine the memory size needed to store an HNSW index, use the
following formula: 1.3 * number of vectors * number of dimensions * size of your
vector dimension type (for example, a FLOAT32 is equivalent to BINARY_FLOAT and is 4
bytes in size).

See Also:

• Vector Memory Pool Views
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Vector Pool Size with Autonomous Database Serverless Services

When using Autonomous Database Serverless services (ADB-S), you cannot explicitly set any
SGA-related memory parameters. This includes direct modification of the Vector Pool size.

With ADB-S, the Vector Pool can dynamically grow and shrink:

• An increase to the Vector Pool size is automatically triggered by HNSW index creation and
when reopening a PDB containing HNSW indexes.

• A reduction to the Vector Pool size is automatically triggered by an HNSW index drop, PDB
close, and CPU reduction.

Note:

Vector Pool size is limited to a maximum of 70% of the PDB SGA size. The SGA size
can be retrieved by using the following query:

SELECT value FROM V$PARAMETER WHERE name='sga_target';

Note:

Changing instance configuration can cause a previously created HNSW index to be
evicted due to insufficient Vector Pool memory. For example, this could be the case if
one instance with 15 OCPUs is split into two instances, each with 8 OCPUs.

You can check how much memory is allocated to the Vector Pool after HNSW index
creation using a SELECT statement similar to the following:

SELECT sum(alloc_bytes) FROM V$VECTOR_MEMORY_POOL;

Note:

Until an HNSW index is created, V$VECTOR_MEMORY_POOL shows 0 in the ALLOC_BYTES
column.

Manage the Different Categories of Vector Indexes
There are two ways to make vector searches faster:

• Reduce the search scope by clustering vectors (nearest neighbors) into structures based
on certain attributes and restricting the search to closest clusters.

• Reduce the vector size by reducing the number of bits representing vectors values.

Oracle AI Vector Search supports the following categories of vector indexing methods based
on approximate nearest-neighbors (ANN) search:
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• In-Memory Neighbor Graph Vector Index

• Neighbor Partition Vector Index

The distance function used to create and search the index should be the one recommended by
the embedding model used to create the vectors. You can specify this distance function at the
time of index creation or when you perform a similarity search using the VECTOR_DISTANCE()
function. If you use a different distance function than the one used to create the index, an exact
match is triggered because you cannot use the index in this case.

Note:

• Oracle AI Vector Search indexes supports the same distance metrics as the
VECTOR_DISTANCE() function. COSINE is the default metric if you do not specify
any metric at the time of index creation or during a similarity search using the
VECTOR_DISTANCE() function.

• You should always define the distance metric in an index based on the distance
metric used by the embedding model you are using.

• In-Memory Neighbor Graph Vector Index
Hierarchical Navigable Small World (HNSW) is the only type of In-Memory Neighbor Graph
vector index supported. HNSW graphs are very efficient indexes for vector approximate
similarity search. HNSW graphs are structured using principles from small world networks
along with layered hierarchical organization.

• Neighbor Partition Vector Index
Inverted File Flat (IVF) index is the only type of Neighbor Partition vector index supported.
Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index that lets you
balance high-search quality with reasonable speed.

• Guidelines for Using Vector Indexes
Use these guidelines to create and use Hierarchical Navigable Small World (HNSW) or
Inverted File Flat (IVF) vector indexes.

• Index Accuracy Report
The index accuracy reporting feature lets you determine the accuracy of your vector
indexes.

• Vector Index Status, Checkpoint, and Advisor Procedures
Review these high-level details on the GET_INDEX_STATUS, ENABLE_CHECKPOINT,
DISABLE_CHECKPOINT, and INDEX_VECTOR_MEMORY_ADVISOR procedures that are available
with the DBMS_VECTOR PL/SQL package.

In-Memory Neighbor Graph Vector Index
Hierarchical Navigable Small World (HNSW) is the only type of In-Memory Neighbor Graph
vector index supported. HNSW graphs are very efficient indexes for vector approximate
similarity search. HNSW graphs are structured using principles from small world networks
along with layered hierarchical organization.

• About In-Memory Neighbor Graph Vector Index
The default type of index created for an In-Memory Neighbor Graph vector index is
Hierarchical Navigable Small World.

• Hierarchical Navigable Small World Index Syntax and Parameters
Review the syntax and examples for Hierarchical Navigable Small World vector indexes.
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About In-Memory Neighbor Graph Vector Index
The default type of index created for an In-Memory Neighbor Graph vector index is
Hierarchical Navigable Small World.

• Understand Hierarchical Navigable Small World Indexes
Use these examples to understand how to create HNSW indexes for vector approximate
similarity searches.

• Understand Transaction Support for Tables with HNSW Indexes
Hierarchical Navigable Small World (HNSW) index graphs are static memory-only
structures. Transaction maintenance on tables with HNSW indexes is done by using two
main structures: private journal and shared journal.

• Understand HNSW Index Population Mechanisms in Oracle RAC or Single Instance
Learn how Hierarchical Navigable Small World (HNSW) indexes are populated during
index creation, index repopulation, or instance startup in an Oracle Real Application
Clusters (Oracle RAC) or a non-RAC environment.

Understand Hierarchical Navigable Small World Indexes
Use these examples to understand how to create HNSW indexes for vector approximate
similarity searches.

With Navigable Small World (NSW), the idea is to build a proximity graph where each vector in
the graph connects to several others based on three characteristics:

• The distance between vectors

• The maximum number of closest vector candidates considered at each step of the search
during insertion (EFCONSTRUCTION)

• Within the maximum number of connections (NEIGHBORS) permitted per vector

If the combination of the above two thresholds is too high, then you may end up with a densely
connected graph, which can slow down the search process. On the other hand, if the
combination of those thresholds is too low, then the graph may become too sparse and/or
disconnected, which makes it challenging to find a path between certain vectors during the
search.

Navigable Small World (NSW) graph traversal for vector search begins with a predefined entry
point in the graph, accessing a cluster of closely related vectors. The search algorithm employs
two key lists: Candidates, a dynamically updated list of vectors that we encounter while
traversing the graph, and Results, which contains the vectors closest to the query vector found
thus far. As the search progresses, the algorithm navigates through the graph, continually
refining the Candidates by exploring and evaluating vectors that might be closer than those in
the Results. The process concludes once there are no vectors in the Candidates closer than
the farthest in the Results, indicating a local minimum has been reached and the closest
vectors to the query vector have been identified.

This is illustrated in the following graphic:
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Figure 6-2    Navigable Small World Graph

The described method demonstrates robust performance up to a certain scale of vector
insertion into the graph. Beyond this threshold, the Hierarchical Navigable Small World
(HNSW) approach enhances the NSW model by introducing a multi-layered hierarchy, akin to
the structure observed in Probabilistic Skip Lists. This hierarchical architecture is implemented
by distributing the graph's connections across several layers, organizing them in a manner
where each subsequent layer contains a subset of the links from the layer below. This
stratification ensures that the top layers capture long-distance links, effectively serving as
express pathways across the graph, while the lower layers focus on shorter links, facilitating
fine-grained, local navigation. As a result, searches begin at the higher layers to quickly
approximate the region of the target vector, progressively moving to lower layers for a more
precise search, significantly improving search efficiency and accuracy by leveraging shorter
links (smaller distances) between vectors as one moves from the top layer to the bottom.

To better understand how this works for HNSW, let's look at how this hierarchy is used for the
Probability Skip List structure:

Figure 6-3    Probability Skip List Structure

The Probability Skip List structure uses multiple layers of linked lists where the above layers
are skipping more numbers than the lower ones. In this example, you are trying to search for
number 17. You start with the top layer and jump to the next element until you either find 17,
reach the end of the list, or you find a number that is greater than 17. When you reach the end
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of a list or you find a number greater than 17, then you start in the previous layer from the
latest number less than 17.

HNSW uses the same principle with NSW layers where you find greater distances between
vectors in the higher layers. This is illustrated by the following diagrams in a 2D space:

At the top layer are the longest edges and at the bottom layer are the shortest ones.

Figure 6-4    Hierarchical Navigable Small World Graphs

Starting from the top layer, the search in one layer starts at the entry vector. Then for each
node, if there is a neighbor that is closer to the query vector than the current node, it jumps to
that neighbor. The algorithm keeps doing this until it finds a local minimum for the query vector.
When a local minimum is found in one layer, the search goes to the next layer by using the
same vector in that new layer and the search continues in that layer. This process repeats itself
until the local minimum of the bottom layer is found, which contains all the vectors. At this
point, the search is transformed into an approximate similarity search using the NSW algorithm
around that latest local minimum found to extract the top k most similar vectors to your query
vector. While the upper layers can have a maximum of connections for each vector set by the
NEIGHBORS parameter, layer 0 can have twice as much. This process is illustrated in the
following graphic:
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Figure 6-5    Hierarchical Navigable Small World Graphs Search

Layers are implemented using in-memory graphs (not Oracle Inmemory graph). Each layer
uses a separate in-memory graph. As already seen, when creating an HNSW index, you can
fine tune the maximum number of connections per vector in the upper layers using
the NEIGHBORS parameter as well as the maximum number of closest vector candidates
considered at each step of the search during insertion using the EFCONSTRUCTION parameter,
where EF stands for Enter Factor.

As explained earlier, when using Oracle AI Vector Search to run an approximate search query
using HNSW indexes, you have the possibility to specify a target accuracy at which the
approximate search should be performed.

In the case of an HNSW approximate search, you can specify a target accuracy percentage
value to influence the number of  candidates considered to probe the search. This is
automatically calculated by the algorithm. A value of 100 will tend to impose a similar result as
an exact search, although the system may still use the index and will not perform an exact
search. The optimizer may choose to still use an index as it may be faster to do so given the
predicates in the query. Instead of specifying a target accuracy percentage value, you can
specify the EFSEARCH parameter to impose a certain maximum number of candidates to be
considered while probing the index. The higher that number, the higher the accuracy.
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Note:

• If you do not specify any target accuracy in your approximate search query, then
you will inherit the one set when the index was created. You will see that at index
creation, you can specify a target accuracy either using a percentage value or
parameters values depending on the index type you are creating.

• It is possible to specify a different target accuracy at index search compared to
the one set at index creation. For HNSW indexes, you may look at more
neighbors using the EFSEARCH parameter (higher than the EFCONSTRUCTION value
specified at index creation) to get more accurate results. The target accuracy that
you give during index creation decides the index creation parameters and also
acts as the default accuracy values for vector index searches.

Understand Transaction Support for Tables with HNSW Indexes
Hierarchical Navigable Small World (HNSW) index graphs are static memory-only structures.
Transaction maintenance on tables with HNSW indexes is done by using two main structures:
private journal and shared journal.

A private journal is a per-transaction in-memory data structure that tracks vectors, added or
deleted by a transaction (updates are in fact a delete followed by an insert). This is comparable
to transaction journals that are used to maintain the in-memory column store data (explained in 
Oracle Database In-Memory Guide). These memory structures come out of the Vector Memory
Pool and are used for read consistency purposes.

A shared journal contains the commit system change numbers (SCNs) and corresponding
modified rows. This structure is an on-disk structure created at the time of vector index
creation. At commit time, the changes recorded into a private journal are converted to rows
and flushed into the shared journal. This structure is also used for read consistency purposes.

Note:

• For bulk DMLs (direct load using INSERT /*+ APPEND */), changes are tracked
directly in the shared journal to avoid pressure on the vector memory pool.

• At the time of full repopulation (until a new HNSW graph becomes available), if a
query tries to access an older version of the HNSW graph that no longer exists,
then the read consistency error ORA 51815 "INMEMORY NEIGHBOR GRAPH HNSW
vector index snapshot is too old." is triggered.

For example, assume that an old HNSW graph exists at SCN 100. While a full
repopulation builds a new graph at SCN 200 (which will create a new ROWID-to-
VID mapping table), a query arriving at SCN 150 cannot access the new graph at
SCN 200. This is because the query's execution plan is compiled with the old
ROWID-to-VID mapping table corresponding to the old graph at SCN 100.

In addition to the previously defined structures used mostly for transaction consistency, a full
checkpoint on-disk structure can also be maintained, if enabled, for faster reload of HNSW
indexes after instance restart. A full checkpoint is automatically created upon index creation
and full repopulation of the HNSW graph. HNSW checkpointing is enabled by default. To
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disable or re-enable checkpoints, see Vector Index Status, Checkpoint, and Advisor
Procedures.

Let us see how the previously defined structures are used in conjunction of each other to
achieve overall better performance for transaction maintenance and read consistency on
tables with HNSW indexes:

1. Following DMLs, read consistency is achieved by taking into account both the existing
HNSW graph in memory as well as the query's private journal and shared journal to
determine the list of transactionally-consistent set of deleted and inserted vectors. This
consists of identifying exact lists of deleted vectors from the journals, running an
approximate top-K search through the current version of the HNSW index by augmenting
the filter to ignore deleted vectors, running an exact top-k search of newly inserted vectors
in the journals, and merging the results of the two searches.

This is illustrated by the following diagram:

2. As DMLs accumulate in the shared journal, exact searches for deleted and inserted
vectors in the on-disk journal see their performance deteriorating. To minimize this impact,
a full repopulation of the index is automatically triggered. The decision to repopulate the
HNSW index in the background is based on a default threshold representing a certain
percentage of the number of DMLs run against the index. In addition, each time the HNSW
index is created or repopulated, a full checkpoint of the newly created graph and the new
ROWID-to-VID mapping table are recreated on disks.

This is illustrated by the following diagram:
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Note:

During full repopulation, two copies of the graph are needed in memory. For example,
if we have 10% new inserts, then the vector memory requirement for the repopulated
graph will be approximately 10% more than the original HNSW graph size in memory.
So at peak vector memory requirement during repopulation, the memory need will be
2.1 times before going down to 1.1 times after repopulation is finalized. This is done
to ensure that read consistency can still be done using the previous version of the
graph while the new one is being created.

Understand HNSW Index Population Mechanisms in Oracle RAC or Single Instance
Learn how Hierarchical Navigable Small World (HNSW) indexes are populated during index
creation, index repopulation, or instance startup in an Oracle Real Application Clusters (Oracle
RAC) or a non-RAC environment.

HNSW Index Creation and Repopulation

The following diagram summarizes what happens when you create the HNSW index in an
Oracle RAC environment:

1. The RAC instance that creates the HNSW index is responsible for creating the HNSW
ROWID-to-VID mapping table on the disk. As explained in Optimizer Plans for HNSW
Vector Indexes, this table is needed by the optimizer to run certain optimization plans.

2. By default, once the first HNSW graph is created, all other RAC instances are informed to
start their own HNSW In-Memory Graph creation concurrently. This operation is called an
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HNSW duplication operation. The duplication mechanism is using the HNSW ROWID-to-
VID mapping table on disk to avoid many recalculations and benefit from the existence of
the HNSW ROWID-to-VID mapping table.

Note:

Instances that do not have enough vector memory cannot participate in the parallel
RAC-wide HNSW index population.

Note:

Although each RAC instance shares the same ROWID-to-VID mapping table, each
instance may end up with a different HNSW In-Memory Graph. Therefore, you may
get different results depending on which RAC instance the query lands on.

In addition to this initial index creation case, the same duplication mechanism is also used
when the HNSW index needs to be fully repopulated. See Understand Transaction Support for
Tables with HNSW Indexes for more information about why and when HNSW index full
repopulation operation is triggered.

HNSW Full Checkpoints

A full checkpoint is a serialized version of the HNSW graph, stored on disk and containing all
the vertices and edges of the HNSW multi-layered graph. A full checkpoint is self-contained
and has roughly the same footprint as the corresponding HNSW in-memory graph. As
explained in Understand Transaction Support for Tables with HNSW Indexes, a full checkpoint
is created at both the index creation time and repopulation operation.
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HNSW full checkpoints are used to reduce the HNSW graph creation time when a new
instance joins an Oracle RAC cluster or when an instance is restarted. The main advantage of
using the full checkpoint over using the ROWID-to-VID mapping table or creating a new graph
is that the neighbors for a particular vector have already been computed and persisted in the
full checkpoint.

Note:

Although an HNSW full checkpoint might not be completely up-to-date and missing
some transactions (because it is not maintained for every DML), it will eventually
catch up while read consistency is still ensured by reading the missing vectors from
the on-disk shared journal. The shared journal is also automatically created by the
HNSW index creating instance for transaction support on HNSW indexes. For more
information on the shared journal, see Understand Transaction Support for Tables
with HNSW Indexes.

When you create an HNSW index, the full checkpoint creation and maintenance is enabled by
default.

Note:

The HNSW full checkpoint can only be maintained provided there is adequate space
in the user's tablespace.

You can disable or re-enable full HNSW checkpoints by using the DBMS_VECTOR package:

• Disable means drop existing full checkpoint for a particular index and do not create new
full checkpoints:

DBMS_VECTOR.DISABLE_CHECKPOINT(<schema owning indexes> [, <index name>])

• Enable (default) means the next HNSW graph repopulation will create a full checkpoint for
a particular HNSW index:

DBMS_VECTOR.ENABLE_CHECKPOINT(<schema owning indexes> [, <index name>] [, 
<tablespace name>])

For more information, see the ENABLE_CHECKPOINT and DISABLE_CHECKPOINT procedures in 
Vector Index Status, Checkpoint, and Advisor Procedures.

You can query the catalog table VECSYS.VECTOR$INDEX$CHECKPOINTS to track information about
full checkpoints at the database level. See VECSYS.VECTOR$INDEX$CHECKPOINTS.

HNSW Index Reload at Instance Restart or New Node Joining Cluster

Because HNSW indexes are created in memory, if the Oracle Database instance goes down,
then you lose the corresponding in-memory graphs representing your HNSW indexes. By
default, when the instance starts again, a reload mechanism is triggered to recreate the
HNSW graph in memory as quickly as possible. This reload mechanism is enabled by default
for both Oracle RAC and non-RAC environments.

The way the reload mechanism is processed depends on the existence, or not, of a full HNSW
graph checkpoint on disk.
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The following diagram summarizes reload mechanism in a RAC environment:

1. At index creation time, the in-memory HNSW graph and the ROWID-to-VID mapping table
on disks are created.

2. If enabled, a full checkpoint is also created on disks.

3. The shared journal structure is also created and used to handle transaction consistency for
HNSW indexes.

4. If the VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD instance parameter is set to RESTART (default
setting) at the time the instance joins the cluster or when restarting, and if a full checkpoint
exists and is not deemed too old compared to the current instance SCN, then it is used by
the starting instance to create its HNSW graph in memory. If these two conditions are not
met, then the starting instance uses the duplication mechanism to create the HNSW graph
in memory from scratch. If the VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD instance parameter
is set to OFF at the time the instance joins the cluster or when restarting, then the HNSW
graph is not reloaded.

Note:

A full checkpoint is used to reload the HNSW graph in memory for an instance if its
creation SCN is not too old as compared to the current instance's SCN. If the SCN is
too old, then that instance does a full repopulation of the index using the duplication
mechanism (as previously described).

Note:

The VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD initialization parameter value governs
the automatic reload or not of the HNSW indexes in-memory graphs.
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Hierarchical Navigable Small World Index Syntax and Parameters
Review the syntax and examples for Hierarchical Navigable Small World vector indexes.

Syntax

CREATE VECTOR INDEX vector_index_name 
ON table_name (vector_column)
[GLOBAL] ORGANIZATION INMEMORY [NEIGHBOR] GRAPH
[WITH] [DISTANCE [CUSTOM [<schema>.][<package>.]] metric name]
[WITH TARGET ACCURACY percentage_value]
[PARAMETERS (TYPE HNSW , {NEIGHBORS max_closest_vectors_connected 
    | M max_closest_vectors_connected}                           
    , EFCONSTRUCTION max_candidates_to_consider)]
[PARALLEL degree_of_parallelism]

HNSW Parameters

NEIGHBORS and M are equivalent and represent the maximum number of neighbors a vector
can have on any layer. The last vertex has one additional flexibility that it can have up to 2M
neighbors.

EFCONSTRUCTION represents the maximum number of closest vector candidates considered
at each step of the search during insertion.

The valid range for HNSW vector index parameters are:

• ACCURACY: > 0 and <= 100

• DISTANCE: EUCLIDEAN, L2_SQUARED (aka EUCLIDEAN_SQUARED), COSINE, DOT, MANHATTAN,
HAMMING, CUSTOM <custom metric name>

• TYPE: HNSW
• NEIGHBORS: > 0 and <= 2048

• EFCONSTRUCTION: > 0 and <= 65535

Examples

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION 
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION 
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction 
500);

For detailed information, see CREATE VECTOR INDEX in Oracle Database SQL Language
Reference .
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Neighbor Partition Vector Index
Inverted File Flat (IVF) index is the only type of Neighbor Partition vector index supported.
Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index that lets you
balance high-search quality with reasonable speed.

• About Neighbor Partition Vector Index
The default type of index created for a Neighbor Partition vector index is Inverted File Flat.

• Included Columns
Included columns in vector indexes facilitate faster searches with attribute filters by
incorporating non-vector columns within a Neighbor Partition Vector Index.

• Inverted File Flat Index Syntax and Parameters
Review the syntax and examples for Inverted File Flat vector indexes.

About Neighbor Partition Vector Index
The default type of index created for a Neighbor Partition vector index is Inverted File Flat.

• Understand Inverted File Flat Vector Indexes
The Inverted File Flat vector index is a technique designed to enhance search efficiency by
narrowing the search area through the use of neighbor partitions or clusters.

• Inverted File Flat Vector Indexes Partitioning Schemes
Inverted File Flat vector indexes support both global and local indexes on partitioned
tables. By default, IVF indexes are globally partitioned by centroid.

Understand Inverted File Flat Vector Indexes
The Inverted File Flat vector index is a technique designed to enhance search efficiency by
narrowing the search area through the use of neighbor partitions or clusters.

The following diagrams depict how partitions or clusters are created in an approximate search
done using a 2D space representation. But this can be generalized to much higher dimensional
spaces.
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Figure 6-6    Inverted File Flat Index Using 2D

Crosses represent the vector data points in this space.

New data points, shown as small plain circles, are added to identify k partition centroids, where
the number of centroids (k) is determined by the size of the dataset (n). Typically k is set to the
square root of n, though it can be adjusted by specifying the NEIGHBOR PARTITIONS parameter
during index creation.

Each centroid represents the average vector (center of gravity) of the corresponding partition.

The centroids are calculated by a training pass over the vectors whose goal is to minimize the
total distance of each vector from the closest centroid.

The centroids ends up partitioning the vector space into k partitions. This division is
conceptually illustrated as expanding circles from the centroids that stop growing as they meet,
forming distinct partitions.
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Figure 6-7    Inverted File Flat Index

Except for those on the periphery, each vector falls within a specific partition associated with a
centroid.

Figure 6-8    Inverted File Flat Index
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For a query vector vq, the search algorithm identifies the nearest i centroids, where i defaults
to the square root of k but can be adjusted for a specific query by setting the NEIGHBOR
PARTITION PROBES parameter. This adjustment allows for a trade-off between search speed
and accuracy.

Higher numbers for this parameter will result in higher accuracy. In this example, i is set to 2
and the two identified partitions are partitions number 1 and 3.

Figure 6-9    Inverted File Flat Index

Once the i partitions are determined, they are fully scanned to identify, in this example, the top
5 nearest vectors. This number 5 can be different from k and you specify this number in your
query. The five nearest vectors to vq found in partitions number 1 and 3 are highlighted in the
following diagram.

This method constitutes an approximate search as it limits the search to a subset of partitions,
thereby accelerating the process but potentially missing closer vectors in unexamined
partitions. This example illustrates that an approximate search might not yield the exact
nearest vectors to vq, demonstrating the inherent trade-off between search efficiency and
accuracy.
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Figure 6-10    Inverted File Flat Index

However, the five exact nearest vectors from vq are not the ones found by the approximate
search. You can see that one of the vectors in partition number 4 is closer to vq than one of the
retrieved vectors in partition number 3.

Figure 6-11    Inverted File Flat Index
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You can now see why using vector index searches is not always an exact search and is called
an approximate search instead. In this example, the approximate search accuracy is only 80%
as it has retrieved only 4 out of 5 of the exact search vectors' result.

Figure 6-12    Inverted File Flat Index

When using Oracle AI Vector Search to run an approximate search query using vector indexes,
you have the possibility to specify a target accuracy at which the approximate search should
be performed.

In the case of an IVF approximate search, you can specify a target accuracy percentage value
to influence the number of partitions used to probe the search. This is automatically calculated
by the algorithm. A value of 100 will tend to impose an exact search, although the system may
still use the index and will not perform an exact search. The optimizer may choose to still use
an index as it may be faster to do so given the predicates in the query. Instead of specifying a
target accuracy percentage value, you can specify the NEIGHBOR PARTITION PROBES parameter
to impose a certain maximum number of partitions to be probed by the search. The higher that
number, the higher the accuracy.
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Note:

• If you do not specify any target accuracy in your approximate search query, then
you will inherit the one set when the index was created. You will see that at index
creation time, you can specify a target accuracy either using a percentage value
or parameters values depending on the type of index you are creating.

• It is possible to specify a different target accuracy at index search, compared to
the one set at index creation. For IVF indexes, you may probe more centroid
partitions using the NEIGHBOR PARTITION PROBES parameter to get more accurate
results. The target accuracy that you provide during index creation decides the
index creation parameters and also acts as the default accuracy value for vector
index searches.

Inverted File Flat Vector Indexes Partitioning Schemes
Inverted File Flat vector indexes support both global and local indexes on partitioned tables. By
default, IVF indexes are globally partitioned by centroid.

A global IVF index is composed of two tables:

• One called VECTOR$<base table name>_IVF_IDX$<object info>$IVF_FLAT_CENTROIDS,
containing the list of identified centroid vectors and associated ids.

• The second called VECTOR$<base table name>_IVF_IDX$<object
info>$IVF_FLAT_CENTROID_PARTITIONS, which is list-partitioned on the centroid ids. Each
partition contains the base table vectors closely related (cluster) to the corresponding
centroid id for that partition.

This is illustrated by the following diagram:
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This structure is used to accelerate searches in the index by identifying first the centroid that is
the closest to your query vector, and then use the corresponding centroid id to prune
unnecessary partitions.

However, if the base table is partitioned on some relational data and your query is filtering on
the base table partition key, then global IVF indexes are not optimal because they are
completely independent of the base table partition key. For example, if you search the top-10
houses in California similar to a vectorized picture, the picture itself has most probably no
relationship with the state of California. While your query benefits from the fact that your base
table is partitioned by state, so you can search only the partition corresponding to California,
the query still must look at pictures that may not be in California.

To further accelerate such type of queries, you have the possibility to create a local IVF index.
The term local for an index refers to a one-to-one relationship between the base table
partitions or subpartitions and the index partitions. The local IVF index creation and DML
operations on the base tables with IVF indexes could be accelerated if Vector Pool is enabled.
Vector Pool is a new memory area stored in the SGA. For more information related to Vector
Pool, read this topic: Size the Vector Pool.

This is illustrated by the following graphic, where the base table has three partitions. The
created local IVF index is still constituted by two internal tables:

• One called VECTOR$<base table name>_IVF_IDX$<object info>$IVF_FLAT_CENTROIDS,
which is list-partitioned by base table partition ids, and is thus equi-partioned with the base
table. Each partition containing the list of corresponding identified centroid vectors and
associated ids.
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• The second called VECTOR$<base table name>_IVF_IDX$<object
info>$IVF_FLAT_CENTROID_PARTITIONS, which is list-partitioned by base table partition id
and list-subpartitioned by centroid id. This table is also equi-partitioned with the base table,
and each subpartition contains the base table vectors closely related (cluster) to the
corresponding centroid id for that subpartition.

Coming back to our initial example where you search the top-10 houses in California similar to
a vectorized picture; your query benefits from partition pruning on the base table and Centroids
table (California) as they are both partitioned by state. In addition, and once the closest
centroid is identified in that partition, the query simply needs to scan the corresponding
centroid cluster subpartition in the Centroid Partitions table without having to scan other
centroid subpartitions.

Another possibility is for the base table to be composite partitioned. Here is a graphical
representation corresponding to that case. The Centroids table is list-partitioned according to
base table subpartitions. Each partition in the Centroids table containing all centroid vectors
found in the corresponding base table subpartition. The Centroid Partitions table is list-
partitioned by base table subpartition id, and is further subpartitioned by centroid id:
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Note:

You can create local IVF indexes only on a partitioned base table.

Local IVF indexes inherit all system catalog tables and views used by regular local
indexes. A flag (idx_spare2) in the vecsys.vector$index table indicates if an index
is a local or global vector index.

Using local IVF indexes brings additional advantages:

• Simplified partition management operations (PMOP):

For example, dropping a table partition just involves dropping the corresponding index
partition.

• Flexible Indexing schemes:

For example, marking certain index partitions UNUSABLE to avoid indexing certain table
partitions through partial indexing.
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Note:

If you want your user queries to use full potential of local IVF indexes, by taking the
benefit of partition pruning, then user queries must satisfy the following conditions:

• The base table is [sub]partitioned by a single column.

• Conditions are a form of [sub]partitition_key CMP constant, where CMP can
be:

=, >, >=, <, <=, IN
• The partition_key condition is ANDed with other non-partition conditions.

Partition Management Operations (PMOP) and IVF Indexes

These are the PMOP possibilities and restrictions for local IVF indexes:

• ALTER TABLE TRUNCATE [sub]partition <partition_name>
ALTER TABLE DROP [sub]partition <partition_name>
These operations are supported with all partition schemes: RANGE, HASH, LIST. However, all
corresponding IVF index partitions are marked as UNUSABLE after the operation.

• ALTER TABLE ADD [sub]partition <partition_name>
If the base table is partitioned by RANGE or LIST, then the operation is supported. However,
all corresponding IVF indexes are marked as UNUSABLE after the operation. If the table is
partitioned by HASH, then the operation fails if there are any local IVF indexes on the base
table.

• All other PMOP operations on the base table are not supported, such as ALTER TABLE
SPLIT/MERGE/MOVE/EXCHANGE/COALESCE.

These ALTER TABLE statements will fail if there are any local IVF indexes on the table being
altered.

• ALTER INDEX on local IVF indexes is not supported.

Experiment with LOCAL IVF Vector Indexes

You can start experimenting with LOCAL IVF indexes using the following code. This is not a
scenario but merely a series of SQL commands to help you get started on your own testing
scenarios.

1. Create the base table using the partition scheme of your choice:
RANGE partitioning:

DROP TABLE sales_data PURGE;

CREATE TABLE sales_data
(
    product_id NUMBER,
    customer_id NUMBER,
    sale_date DATE,
    amount_sold NUMBER,
    vec vector(8),
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    region VARCHAR2(20)
)
PARTITION BY RANGE (product_id)
(
    PARTITION sales_1 VALUES LESS THAN (100),
    PARTITION sales_2 VALUES LESS THAN (200),
    PARTITION sales_3 VALUES LESS THAN (300),
    PARTITION sales_4 VALUES LESS THAN (400),
    PARTITION sales_5 VALUES LESS THAN (500),
    PARTITION sales_6 VALUES LESS THAN (600),
    PARTITION sales_7 VALUES LESS THAN (700),
    PARTITION sales_8 VALUES LESS THAN (800),
    PARTITION sales_9 VALUES LESS THAN (900),
    PARTITION sales_10 VALUES LESS THAN (1000),
    PARTITION sales_default VALUES LESS THAN (1000000)
);

LIST partitioning:

DROP TABLE sales_data PURGE;

CREATE TABLE sales_data
(
    product_id   NUMBER,
    customer_id  NUMBER,
    sale_date    DATE,
    amount_sold  NUMBER,
    vec          VECTOR(8),
    region       VARCHAR2(20)
)
PARTITION BY LIST (region)
(
    PARTITION RegionA_Partition VALUES 
('RegionA1','RegionA2','RegionA3','RegionA4','RegionA5'),
    PARTITION RegionB_Partition VALUES 
('RegionB1','RegionB2','RegionB3','RegionB4','RegionB5'),
    PARTITION RegionC_Partition VALUES 
('RegionC1','RegionC2','RegionC3','RegionC4','RegionC5'),
    PARTITION RegionD_Partition VALUES 
('RegionD1','RegionD2','RegionD3','RegionD4','RegionD5'),
    PARTITION RegionE_Partition VALUES 
('RegionE1','RegionE2','RegionE3','RegionE4','RegionE5'),
    PARTITION RegionF_Partition VALUES 
('RegionF1','RegionF2','RegionF3','RegionF4','RegionF5'),
    PARTITION RegionG_Partition VALUES 
('RegionG1','RegionG2','RegionG3','RegionG4','RegionG5'),
    PARTITION RegionH_Partition VALUES 
('RegionH1','RegionH2','RegionH3','RegionH4','RegionH5'),
    PARTITION RegionI_Partition VALUES 
('RegionI1','RegionI2','RegionI3','RegionI4','RegionI5'),
    PARTITION RegionJ_Partition VALUES 
('RegionJ1','RegionJ2','RegionJ3','RegionJ4','RegionJ5'),
    PARTITION Other_Region_Partition VALUES (DEFAULT)
);
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HASH partitioning:

DROP TABLE sales_data PURGE;

CREATE TABLE sales_data
(
    product_id   NUMBER,
    customer_id  NUMBER,
    sale_date    DATE,
    amount_sold  NUMBER,
    vec          VECTOR(8),
    region       VARCHAR2(20)
)
PARTITION BY HASH (product_id)
PARTITIONS 10;

2. Use this procedure to randomly insert data into the SALES_DATA table:

CREATE OR REPLACE PROCEDURE insert_sales_data(numRows IN INTEGER, 
maxProductId IN INTEGER) AS
  TYPE vec_array IS VARRAY(8) OF NUMBER;
BEGIN
  DBMS_RANDOM.INITIALIZE(100);
    FOR i IN 1..numRows LOOP
      INSERT INTO sales_data (product_id, customer_id, sale_date, 
amount_sold, vec, region)
        VALUES (round(DBMS_RANDOM.VALUE(1, MaxProductId)),    -- Random 
product_id between 1 and 1000
                round(DBMS_RANDOM.VALUE(1, 10000)),   -- Random 
customer_id between 1 and 10000
                (DATE '2024-05-10' - DBMS_RANDOM.VALUE(1, 1460)), -- 
Random sale_date within the last 4 years
                DBMS_RANDOM.VALUE(10, 10000),  -- Random amount_sold 
between 10 and 1000
                '[' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) || ',' ||
                    to_char(DBMS_RANDOM.VALUE(0, 1000)) ||
                ']',
                CASE MOD(i, 10)
                    WHEN 0 THEN 'RegionA' || MOD(i,5)
                    WHEN 1 THEN 'RegionB' || MOD(i,5)
                    WHEN 2 THEN 'RegionC' || MOD(i,5)
                    WHEN 3 THEN 'RegionD' || MOD(i,5)
                    WHEN 4 THEN 'RegionE' || MOD(i,5)
                    WHEN 5 THEN 'RegionF' || MOD(i,5)
                    WHEN 6 THEN 'RegionG' || MOD(i,5)
                    WHEN 7 THEN 'RegionH' || MOD(i,5)
                    WHEN 8 THEN 'RegionI' || MOD(i,5)
                    ELSE        'RegionJ' || MOD(i,5)
                END);
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        IF MOD(i, 10000) = 0 THEN
            COMMIT;
        END IF;
    END LOOP;
    COMMIT;
END insert_sales_data;
/

EXEC insert_sales_data(20000, 501);

3. Create a LOCAL IVF index on the VEC column of the SALES_DATA table:

CREATE VECTOR INDEX vidxivf ON sales_data(vec) 
ORGANIZATION NEIGHBOR PARTITIONS 
WITH TARGET ACCURACY 95 
DISTANCE EUCLIDEAN PARAMETERS(TYPE IVF, NEIGHBOR PARTITION 20) LOCAL;

4. Check all index partitions state before and after running PMOP commands:

SELECT INDEX_NAME, PARTITION_NAME, STATUS 
FROM USER_IND_PARTITIONS 
WHERE index_name LIKE upper('vidxivf') 
ORDER BY 1, 2;

5. Test the following ALTER TABLE commands to see what is supported and what is not:
If the table is RANGE partitioned:

ALTER TABLE sales_data ADD PARTITION sales_1000000 VALUES LESS THAN 
(2000000);

ALTER TABLE sales_data
SPLIT PARTITION sales_2
AT (150)
INTO (
      PARTITION sales_21,
      PARTITION sales_22
);

ALTER TABLE sales_data DROP PARTITION sales_3;

If the table is LIST partitioned:

ALTER TABLE sales_data 
SPLIT PARTITION RegionE_Partition VALUES ('RegionE1', 'RegionE2', 
'RegionE3') 
INTO 
  ( PARTITION RegionE1_Partition,
    PARTITION RegionE2_Partition
  );

ALTER TABLE sales_data DROP PARTITION RegionB_Partition;
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If the table is HASH partitioned:

ALTER TABLE sales_data ADD PARTITION;

SELECT partition_name FROM user_tab_partitions WHERE 
table_name='SALES_DATA';

ALTER TABLE sales_data COALESCE PARTITION;

Included Columns
Included columns in vector indexes facilitate faster searches with attribute filters by
incorporating non-vector columns within a Neighbor Partition Vector Index.

Consider a classic example where you are analyzing the home price data. You want only the
top 10 homes from your description where the price is less than 2 million dollars and/or from
the specific zip code. Or to a finer granularity, you just need to retrieve only the top home that
matches the description and your filter attribute. Included columns make this possible by
incorporating filterable attributes, such as price and zip code, directly into the vector index. This
integration allows the index to evaluate and return results based on both the vector similarity
and the attribute filters, without requiring additional steps to cross-reference the base table.

By bridging the gap between traditional database filters and AI-powered vector searches,
included columns deliver faster, more efficient results. This synergy enhances search
performance, especially in use cases requiring fine-grained filtering alongside advanced
similarity computations.

Syntax and Specifications

Create a base table, which contains the sales data for all products sold in the current year:

create table houses(id number, zip_code number, price number, 
description clob, data_vector vector);

Then, you can create an IVF index with included column on price as follows:

create vector index vidx_ivf on houses(data_vector) include (price) 
organization neighbor partitions with target accuracy 95 
distance EUCLIDEAN parameters(type IVF, neighbor partitions 2);

The above syntax creates a vector index VIDX_IVF with organization as NEIGHBOR
PARTITIONS on the DATA_VECTOR column where the PRICE column is an included column. The
INCLUDE keyword allows a user to specify the attributes they wish to include in the IVF index.

Note:

Included columns does not work with partition local indexes.
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Recall that the IVF index has two auxiliary tables : Centroids table - IVF_FLAT_CENTROIDS and
the Centroid Partitions table - IVF_FLAT_CENTROID_PARTITIONS. The following code block
describes the Centroid Partitions table without the included columns:

  Name                       Null?    Type
 ----------------------------------------- -------- 
----------------------------
 BASE_TABLE_ROWID               NOT NULL ROWID
 CENTROID_ID                   NOT NULL NUMBER
 DATA_VECTOR                        VECTOR(384, FLOAT32, DENSE)
------------------------------------------------------------------------------
--

The list of included columns are augmented in the IVF_FLAT_CENTROID_PARTITIONS table of
IVF index. The BASE_TABLE_ROWID column can be thought of as an implicit included
column. The following table describes the IVF_FLAT_CENTROID_PARTITIONS table with the
included column augmented as the last row. In this case, the price.

 Name                       Null?    Type
 ----------------------------------------- -------- 
----------------------------
 BASE_TABLE_ROWID               NOT NULL ROWID
 CENTROID_ID                   NOT NULL NUMBER
 DATA_VECTOR                        VECTOR(384, FLOAT32, DENSE)
 PRICE                            NUMBER
------------------------------------------------------------------------------
--

DML operations on the base table also maintain the included columns. Updating any row on
the base table for the included columns will all also update the centroid partitions for the IVF
index.

Note:

Restrictions on INCLUDE :
The INCLUDE list can contain:

• Limited to a maximum of 31 columns - Oracle indexes support 32 key columns.

• Supports only the following data types : NUMBER, CHAR, VARCHAR2, DATE,
TIMESTAMP, RAW, JSON, and reference-based LOB types such as BLOB and CLOB.

• Does not support NLS types and LONG types.

Benefits of Using Included Columns

1. IVF No-Filter with and without Included Columns:
If you consider a non-filter query that fetches the two homes nearest to a specified vector,
the resulting query will result in an execution plan with multiple joins.

select /*+ VECTOR_INDEX_TRANSFORM(t) */ price from houses t order by 
VECTOR_DISTANCE(data_vector, :query_vector) fetch first 2 rows only;
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Note:

query_vector contains the actual input vector. You can use the instructions
mentioned in SQL Quick Start Using a FLOAT32 Vector Generator to generate
query_vector.

The multiple joins are displayed in the execution plan below:

Execution Plan
----------------------------------------------------------
Plan hash value: 466477707

---------------------------------------------------------------------------
---------------------------
| Id  | Operation            | Name                                 |
---------------------------------------------------------------------------
---------------------------
|   0 | SELECT STATEMENT        |                                 
|         
|   1 |  VIEW                |                                 
|                
|   2 |   NESTED LOOPS            |                                 
|       
|   3 |    VIEW             | VW_IVPSR_11E7D7DE                         
|       
|*  4 |     COUNT STOPKEY        |                                 
|         
|   5 |      VIEW            | VW_IVPSJ_578B79F1                         
|       
|*  6 |       SORT ORDER BY STOPKEY    |                                 
|       
|   7 |        NESTED LOOPS        |                                 
|       
|   8 |     VIEW            | VW_IVCR_B5B87E67                         
|       
|*  9 |      COUNT STOPKEY        |                                 
|         
|  10 |       VIEW            | VW_IVCN_9A1D2119                         
|       
|* 11 |        SORT ORDER BY STOPKEY|                                 
|     
|  12 |         TABLE ACCESS FULL    | 
VECTOR$VIDX_IVF$74478_74488_0$IVF_FLAT_CENTROIDS         |       
|  13 |     PARTITION LIST ITERATOR |                                 
|       
|* 14 |      TABLE ACCESS FULL    | 
VECTOR$VIDX_IVF$74478_74488_0$IVF_FLAT_CENTROID_PARTITIONS |       
|  15 |    TABLE ACCESS BY USER ROWID    | 
HOUSES                             |       
---------------------------------------------------------------------------
---------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
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   4 - filter(ROWNUM<=2)
   6 - filter(ROWNUM<=2)
   9 - filter(ROWNUM<=1)
  11 - filter(ROWNUM<=1)
  14 - filter("VW_IVCR_B5B87E67"."CENTROID_ID"="VTIX_CNPART"."CENTROID_ID")

You can see in the execution plan that the IVF centroids are joined with the centroid
partition table to scan for the centroids in the nearest neighbor partitions fetched from the
centroid table. This operation is expected. However, you are also performing a join with the
base table: HOUSES to apply the attribute filters. This second join against the base table
could be avoided if the columns were included in the centroid partitions table.

The following execution plan displays the same operation when using a neighbor partition
vector index (IVF) created with included columns:

Execution Plan
----------------------------------------------------------
Plan hash value: 504484986

---------------------------------------------------------------------------
----------------------------
| Id  | Operation               | Name                                  |
---------------------------------------------------------------------------
----------------------------
|   0 | SELECT STATEMENT           |                                  |  
|   1 |  VIEW                   |                                  |   
|   2 |   VIEW                   | 
VW_IVPSR_11E7D7DE                          |  
|*  3 |    COUNT STOPKEY           |                                  
|       
|   4 |     VIEW               | 
VW_IVPSJ_578B79F1                          |     
|*  5 |      SORT ORDER BY STOPKEY     |                                  
|   
|   6 |       NESTED LOOPS           |                                  
|   
|   7 |        VIEW               | 
VW_IVCR_B5B87E67                          |   
|*  8 |     COUNT STOPKEY           |                                  |   
|   9 |      VIEW               | 
VW_IVCN_9A1D2119                          |    
|* 10 |       SORT ORDER BY STOPKEY|                                  |    
|  11 |        TABLE ACCESS FULL   | 
VECTOR$VIDX_IVF_1$74483_74508_0$IVF_FLAT_CENTROIDS          |    
|  12 |        PARTITION LIST ITERATOR |                                  
|     
|* 13 |     TABLE ACCESS FULL      | 
VECTOR$VIDX_IVF_1$74483_74508_0$IVF_FLAT_CENTROID_PARTITIONS |    
---------------------------------------------------------------------------
----------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - filter(ROWNUM<=2)
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   5 - filter(ROWNUM<=2)
   8 - filter(ROWNUM<=1)
  10 - filter(ROWNUM<=1)
  13 - filter("VW_IVCR_B5B87E67"."CENTROID_ID"="VTIX_CNPART"."CENTROID_ID")

As you can see in the execution plan above, adding included columns to a vector index
ensures there is no base table pre-filter evaluation required. The query can be resolved by
scanning the centroids partitions table for the neighbor partitioned vector index.

2. IVF Filtering with Included Columns:
One of the more commonly used plans for neighbor graph vector indexes is the pre-filter
plan. In this case you are filtering the contents of the base table to eliminate non-relevant
rows. But evaluating a query without using a filter attribute can be very expensive as the
operation involves several joins. The following query uses a neighbor partition vector index
without included columns:

SELECT /*+VECTOR_INDEX_TRANSFORM(houses, vidx_ivf) */ price FROM houses 
WHERE price = 1400000 ORDER BY vector_distance(data_vector, :query_vector) 
FETCH APPROX FIRST 4 ROWS ONLY;

Note:

query_vector contains the actual input vector. You can use the instructions
mentioned in SQL Quick Start Using a FLOAT32 Vector Generator to generate
query_vector.

The execution plan shows multiple joins and the mandatory join with the base table
HOUSES.

Execution Plan
----------------------------------------------------------
Plan hash value: 3359903466

---------------------------------------------------------------------------
----------------------------------
| Id  | Operation                   | Name                                
| 
---------------------------------------------------------------------------
----------------------------------
|   0 | SELECT STATEMENT               |                                
|    
|*  1 |  COUNT STOPKEY                   |                                
|    
|   2 |   VIEW                       |                                |    
|*  3 |    SORT ORDER BY STOPKEY           
|                                |    
|   4 |     NESTED LOOPS               |                                
|    
|   5 |      MERGE JOIN CARTESIAN           
|                                |    
|*  6 |       TABLE ACCESS FULL            | 
HOUSES                             |    
|   7 |       BUFFER SORT               |                                
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|    
|   8 |        VIEW                   | 
VW_IVCR_2D77159E                        |     
|*  9 |     COUNT STOPKEY               |                                
|     
|  10 |      VIEW                   | 
VW_IVCN_9A1D2119                        |     
|* 11 |       SORT ORDER BY STOPKEY        
|                                |      
|  12 |        TABLE ACCESS FULL           | 
VECTOR$VIDX_IVF$74478_74488_0$IVF_FLAT_CENTROIDS        |      
|* 13 |      TABLE ACCESS BY GLOBAL INDEX ROWID| 
VECTOR$VIDX_IVF$74478_74488_0$IVF_FLAT_CENTROID_PARTITIONS |     
|* 14 |       INDEX UNIQUE SCAN            | 
SYS_C008791                            |      
---------------------------------------------------------------------------
----------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(ROWNUM<=4)
   3 - filter(ROWNUM<=4)
   6 - filter("HOUSES"."PRICE"=1400000)
   9 - filter(ROWNUM<=3)
  11 - filter(ROWNUM<=3)
  13 - filter("VW_IVCR_2D77159E"."CENTROID_ID"="VTIX_CNPART"."CENTROID_ID")
  14 - access("HOUSES".ROWID="VTIX_CNPART"."BASE_TABLE_ROWID")

On the other hand, if you use the same in-filter query on the IVF index created with price
as the included column, the execution plan would show less joins, the join with the base
table is avoided. This is shown in the plan below:

Execution Plan
----------------------------------------------------------
Plan hash value: 4183240211

---------------------------------------------------------------------------
----------------------------
| Id  | Operation               | Name                                  |
---------------------------------------------------------------------------
----------------------------
|   0 | SELECT STATEMENT           |                                  |
|*  1 |  COUNT STOPKEY               |                                  | 
|   2 |   VIEW                   |                                  |  
|*  3 |    SORT ORDER BY STOPKEY       |                                  
| 
|*  4 |     HASH JOIN               |                                  |
|   5 |      PART JOIN FILTER CREATE   
| :BF0000                              | 
|   6 |       VIEW               | 
VW_IVCR_2D77159E                          | 
|*  7 |        COUNT STOPKEY           |                                  
| 
|   8 |     VIEW               | VW_IVCN_9A1D2119                          
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| 
|*  9 |      SORT ORDER BY STOPKEY |                                  |  
|  10 |       TABLE ACCESS FULL    | 
VECTOR$VIDX_IVF_1$74483_74508_0$IVF_FLAT_CENTROIDS          |  
|  11 |      PARTITION LIST JOIN-FILTER|                                  
|  
|* 12 |       TABLE ACCESS FULL        | 
VECTOR$VIDX_IVF_1$74483_74508_0$IVF_FLAT_CENTROID_PARTITIONS |  
---------------------------------------------------------------------------
----------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter(ROWNUM<=4)
   3 - filter(ROWNUM<=4)
   4 - access("VW_IVCR_2D77159E"."CENTROID_ID"="VTIX_CNPART"."CENTROID_ID")
   7 - filter(ROWNUM<=3)
   9 - filter(ROWNUM<=3)
  12 - filter("VTIX_CNPART"."PRICE"=1400000)

Inverted File Flat Index Syntax and Parameters
Review the syntax and examples for Inverted File Flat vector indexes.

Syntax

CREATE VECTOR INDEX <vector index name>
ON <table name> ( <vector column> )
[GLOBAL] ORGANIZATION [NEIGHBOR] PARTITIONS
[WITH] [DISTANCE <metric name>]
[WITH TARGET ACCURACY <percentage value>
[PARAMETERS ( TYPE IVF, { NEIGHBOR PARTITIONS <number of partitions> | 
                          SAMPLES_PER_PARTITION <number of samples> | 
                          MIN_VECTORS_PER_PARTITION <minimum number of 
vectors per partition> }
            )]]
[PARALLEL <degree of parallelism>]
[LOCAL];

The GLOBAL clause specifies a global IVF index. By default, IVF vector indexes are globally
partitioned by centroid.

Specify the LOCAL clause to create a local IVF index.

IVF PARAMETERS

NEIGHBOR PARTITIONS determines the target number of centroid partitions that are created by
the index.

SAMPLES_PER_PARTITION decides the total number of vectors that are passed to the clustering
algorithm (samples_per_partition * neighbor_partitions). Passing all the vectors could
significantly increase the total index creation time. The goal is to pass in a subset of vectors
that can capture the data distribution.
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MIN_VECTORS_PER_PARTITION represents the target minimum number of vectors per partition.
The goal is to trim out any partition that can end up with few vectors (<= 100).

The valid range for IVF vector index parameters are:

• ACCURACY: > 0 and <= 100

• DISTANCE: EUCLIDEAN, L2_SQUARED (aka EUCLIDEAN_SQUARED), COSINE, DOT, MANHATTAN,
HAMMING

• TYPE: IVF
• NEIGHBOR PARTITIONS: >0 and <= 10000000

• SAMPLES_PER_PARTITION: from 1 to (num_vectors/neighbor_partitions)

• MIN_VECTORS_PER_PARTITION: from 0 (no trimming of centroid partitions) to total number of
vectors (would result in 1 centroid partition)

Examples

• To create a global IVF index:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) 
ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) 
ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 10);

• To create a local IVF index:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) 
ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 10)
LOCAL;

For detailed information on the syntax, see CREATE VECTOR INDEX in Oracle Database SQL
Language Reference.

Related Topics

• Inverted File Flat Vector Indexes Partitioning Schemes
Inverted File Flat vector indexes support both global and local indexes on partitioned
tables. By default, IVF indexes are globally partitioned by centroid.
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Guidelines for Using Vector Indexes
Use these guidelines to create and use Hierarchical Navigable Small World (HNSW) or
Inverted File Flat (IVF) vector indexes.

Create Index Guidelines

The minimum information required to create a vector index is to specify one VECTOR data type
table column and a vector index type: INMEMORY NEIGHBOR GRAPH for HNSW and NEIGHBOR
PARTITIONS for IVF. However, you also have the possibility to specify more information, such
as the following:

• You can optionally provide more information including the distance metric to use.
Supported metrics are EUCLIDEAN SQUARED, EUCLIDEAN, COSINE, DOT, MANHATTAN, and
HAMMING. If not specified, COSINE is used by default.

• Specific parameters that impact the accuracy of index creation and approximate searches.
A target accuracy percentage value and, NEIGHBORS (or M) and EFCONSTRUCTION for HNSW
and NEIGHBOR PARTITIONS for IVF.

• You can create globally partitioned vector indexes.

• You can also specify the degree of parallelism to use for index creation.

You cannot currently define a vector index on:

• External tables

• IOTs

• Clusters/Cluster tables

• Global Temp tables

• Blockchain tables

• Immutable tables

• Materialized views

• Function-based vector index

You can find information about your vector indexes by looking at ALL_INDEXES, DBA_INDEXES,
and USER_INDEXES family of views. The columns of interest are INDEX_TYPE (VECTOR) and
INDEX_SUBTYPE (INMEMORY_NEIGHBOR_GRAPH_HNSW or NEIGHBOR_PARTITIONS_IVF). In the case
the index is not a vector index, INDEX_SUBTYPE is NULL.

See VECSYS.VECTOR$INDEX for detailed information about vector indexes.
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Note:

• The VECTOR column is designed to be extremely flexible to support vectors of any
number of dimensions and any format for the vector dimensions. However, you
can create a vector index only on a VECTOR column containing vectors that all
have the same number of dimensions. This is required as you can't compute
distances over vectors with different dimensions. For example, if a VECTOR
column is defined as VECTOR(*, FLOAT32), and two vectors with different
dimensions (128 and 256 respectively) are inserted in that column. When you try
to create the vector index on that column, you will get an error.

• Once an IVF index is created on a vector column of an empty table and non-null
vectors with a particular dimension have been inserted into it, new vectors with a
different dimension cannot be inserted into the same vector column due to the
existence of the IVF index.

• If a table is truncated, any IVF index created on the table is marked as UNUSABLE.
Thus, the IVF index will not be maintained on any subsequent INSERT statements
with vectors of the same or different dimension count. You must rebuild or
recreate the IVF index before using the index in a query again.

• You can only create one type of vector index per vector column.

• Oracle recommends that you allocate larger, temporary tablespaces for proper
IVF vector index creation with big vector spaces and vector sizes. In such cases,
the system internally makes extensive use of temporary space.

• On a RAC environment you can set up a vector pool on each instance for the
best performance of vector indexes.

Use Index Guidelines

For the Oracle Database Optimizer to consider a vector index, you must ensure these
conditions in your SQL statements:

• The similarity search SQL query must include the APPROX or APPROXIMATE keyword.

• The vector index must exist.

• The distance function for the index must be the same as the distance function used in the
vector_distance() function.

• If the vector index DDL does not specify the distance function and the vector_distance()
function uses EUCLIDEAN, DOT, MANHATTAN or HAMMING, then the vector index is not used.

• If the vector index DDL uses the DOT distance function and the vector_distance()
function uses the default distance function COSINE, then the vector index is not used.

• The vector_distance() must not be encased in another SQL function.

• If using the partition row-limiting clause, then the vector index is not used.

• Index accuracy with an IVF index may diminish over time due to DML operations being
performed on the underlying table. You can check for this by using the
INDEX_ACCURACY_QUERY function provided by the DBMS_VECTOR package. In such a case, the
index can be rebuilt using the REBUILD_INDEX function also provided by the DBMS_VECTOR
package. See DBMS_VECTOR for more information about DBMS_VECTOR and its
subprograms.
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Note:

Except for ALTER TABLE tab SUBPARTITION/PARTITION (RANGE/LIST) with or without
Update Global Indexes, global vector indexes are marked as unusable as part of
other Partition Management Operations on a partitioned table. In those cases you
must manually rebuild the global vector indexes.

Index Accuracy Report
The index accuracy reporting feature lets you determine the accuracy of your vector indexes.

Accuracy of One Specific Query Vector

After a vector index is created, you may be interested to know how accurate your vector
searches are. One possibility might be to run two queries using the same query vector, that is,
one performing an approximate search using a vector index and the other performing an exact
search without an index. Then, you need to manually compare the results to determine the real
accuracy of your index.

Instead, you can use an index accuracy report provided by the
DBMS_VECTOR.INDEX_ACCURACY_QUERY procedure. This procedure provides an accuracy report
for a top-K index search for a specific query vector and a specific target accuracy. For syntax
and parameter details, see INDEX_ACCURACY_QUERY.

Here is a usage example of this procedure using our galaxies scenario:

declare
    q_v VECTOR; 
    report varchar2(128);
begin 
    q_v := to_vector('[0,1,1,0,0]');
    report := dbms_vector.index_accuracy_query(
        OWNER_NAME => 'COSMOS', 
        INDEX_NAME => 'GALAXIES_HNSW_IDX',
        qv => q_v, top_K =>10, 
        target_accuracy =>90 );
    dbms_output.put_line(report); 
end; 
/

The preceding example computes the top-10 accuracy of the GALAXIES_HNSW_IDX vector index
using the embedding corresponding to the NGC 1073 galaxy and a 90% accuracy requested.

The index accuracy report for this may look like:

Accuracy achieved (100%) is 10% higher than the Target Accuracy requested 
(90%)

The possible parameters are:

• owner_name: Index owner name

• index_name: Index name

• qv: Query vector
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• top_K: Top K value for accuracy computation

• target_accuracy: Target accuracy for the index

Accuracy of Automatically Captured Query Vectors

An overloaded version of the DBMS_VECTOR.INDEX_ACCURACY_REPORT function allows you to
capture from your past workloads, accuracy values achieved by your approximate searches
using a particular vector index for a certain period of time. Query vectors used for approximate
searches are captured automatically in memory and persisted to a catalog table every hour.

The INDEX_ACCURACY_REPORT function computes the achieved accuracy using the captured
query vectors for a given index. To compute the achieved accuracy for each query vector, the
function compares the result set of approximate similarity searches with exact similarity
searches for the same query vectors.

The accuracy findings are stored in dictionary and exposed using the
DBA_VECTOR_INDEX_ACCURACY_REPORT dictionary view.

Here is a usage example of this function using the galaxies scenario:

VARIABLE t_id NUMBER;
BEGIN
  :t_id := DBMS_VECTOR.INDEX_ACCURACY_REPORT('VECTOR', 'GALAXIES_HNSW_IDX');
END;
/

You can also run the following statement to get the corresponding task identifier:

SELECT DBMS_VECTOR.INDEX_ACCURACY_REPORT('VECTOR', 'GALAXIES_HNSW_IDX');

The following are possible parameters for the INDEX_ACCURACY_REPORT function:

• owner_name (IN): Index owner name

• ind_name (IN): Index name

• start_time (IN): Query vectors captured from this time are considered for the accuracy
computation. A NULL start_time uses query vectors captured in the last 24 hours.

• end_time (IN): Query vectors captured until this time are considered for accuracy
computation. A NULL end_time uses query vectors captured from start_time until the
current time.

• Return Values: A numeric task ID if the accuracy for the given index was successfully
computed. Otherwise, a NULL task ID is returned.
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Note:

• If both start_time and end_time are NULL, accuracy is computed using query
vectors captured in the last 24 hours.

• If start_time is NULL and end_time is not NULL, accuracy is computed using
query vectors captured between 24 hours before end_time until end_time.

• If start_time is not NULL and end_time is NULL, accuracy is computed using
query vectors captured between start_time and the current time.

You can see the analysis results using the DBA_VECTOR_INDEX_ACCURACY_REPORT view:

desc DBA_VECTOR_INDEX_ACCURACY_REPORT

 Name                                      Null?    Type
 ----------------------------------------- -------- 
----------------------------
 TASK_ID                                            NUMBER
 TASK_TIME                                          TIMESTAMP(6)
 OWNER_NAME                                         VARCHAR2(128)
 INDEX_NAME                                         VARCHAR2(128)
 INDEX_TYPE                                         VARCHAR2(16)
 MIN_TARGET_ACCURACY                                NUMBER
 MAX_TARGET_ACCURACY                                NUMBER
 NUM_VECTORS                                        NUMBER
 MEDIAN_ACHIEVED_ACCURACY                           NUMBER
 MIN_ACHIEVED_ACCURACY                              NUMBER
 MAX_ACHIEVED_ACCURACY                              NUMBER

Select target accuracy values in the following statement:

SELECT MIN_TARGET_ACCURACY, MAX_TARGET_ACCURACY, num_vectors, 
MIN_ACHIEVED_ACCURACY, MEDIAN_ACHIEVED_ACCURACY, MAX_ACHIEVED_ACCURACY 
FROM DBA_VECTOR_INDEX_ACCURACY_REPORT WHERE task_id = 1;

MIN_TARGET_ACCURACY MAX_TARGET_ACCURACY NUM_VECTORS MIN_ACHIEVED_ACCURACY 
MEDIAN_ACHIEVED_ACCURACY MAX_ACHIEVED_ACCURACY
------------------- ------------------- ----------- --------------------- 
------------------------ ---------------------
                  1                  10           2                    
49                       57                    65
                 11                  20           3                    
60                       73                    83
                 21                  30           3                    
44                       64                    84
                 31                  40           2                    
63                     76.5                    90
                 41                  50           3                    
63                       81                    90
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                 61                  70           2                    
57                       68                    79
                 71                  80           3                    
79                       87                    89
                 81                  90           3                    
70                       71                    78
                 91                 100           4                    
67                     79.5                    88

Each row in the output represents a bucket of 10 target accuracy values: 1-10, 11-20, 21-30,
… , 91-100.

Consider the following partial statement that runs an approximate similarity search for a
particular query vector and a particular target accuracy:

SELECT ...
FROM ...
WHERE ...
ORDER BY VECTOR_DISTANCE( embedding, :my_query_vector, COSINE )
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 65;

Once the preceding approximate similarity search is run and captured by your accuracy report
task, the value of NUM_VECTORS would be increased by one in row 6 (bucket values between 61
and 70) of the results of the select statement on the DBA_VECTOR_INDEX_ACCURACY_REPORT view
for your task. NUM_VECTORS represents the number of query vectors that fall in a particular
target accuracy bucket.

MIN_ACHIEVED_ACCURACY, MEDIAN_ACHIEVED_ACCURACY, and MAX_ACHIEVED_ACCURACY are the
actual achieved accuracy values for the given target accuracy bucket.

Note:

The initialization parameter VECTOR_QUERY_CAPTURE is used to enable and disable
capture of query vectors. The parameter value is set to ON by default. You can turn off
this background functionality by setting VECTOR_QUERY_CAPTURE to OFF. When
VECTOR_QUERY_CAPTURE is ON, the database captures some of the query vectors
through sampling. The captured query vectors are retrained for a week and then
purged automatically.

Vector Index Status, Checkpoint, and Advisor Procedures
Review these high-level details on the GET_INDEX_STATUS, ENABLE_CHECKPOINT,
DISABLE_CHECKPOINT, and INDEX_VECTOR_MEMORY_ADVISOR procedures that are available with
the DBMS_VECTOR PL/SQL package.

GET_INDEX_STATUS

Purpose: To query the status of a vector index creation.

Syntax:

DBMS_VECTOR.GET_INDEX_STATUS ('USER_NAME','INDEX_NAME');
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Usage Notes:

• You can use the GET_INDEX_STATUS procedure only during a vector index creation.

• The Percentage value is shown in the output only for Hierarchical Navigable Small World
(HNSW) indexes (and not for Inverted File Flat (IVF) indexes).

• Along with the DB_DEVELOPER_ROLE privilege, you must have read access to the
VECSYS.VECTOR$INDEX$BUILD$ table.

• You can use the following query to view all auxiliary tables:

select IDX_AUXILIARY_TABLES from vecsys.vector$index;

– For HNSW indexes:

rowid_vid_map stores the mapping between a row ID and vector ID.
shared_journal_change_log stores the DML changes that are yet to be incorporated
into an HNSW graph.

– For IVF indexes:

centroids stores the location for each centroid. centroid_partitions stores the
closest centroid for each vector.

• The possible values of Stage for HNSW vector indexes are:

Value Description

HNSW Index Initialization Initialization phase for the HNSW vector index creation

HNSW Index Auxiliary Tables Creation Creation of the internal auxiliary tables for the HNSW
Neighbor Graph vector index

HNSW Index Graph Allocation Allocation of memory from the vector memory pool for the
HNSW graph

HNSW Index Loading Vectors Loading of the base table vectors into the vector pool
memory

HNSW Index Graph Construction Creation of the multi-layered HNSW graph with the previously
loaded vectors

HNSW Index Creation Completed HNSW vector index creation finished

• The possible values of Stage for IVF vector indexes are:

Value Description

IVF Index Initialization Initialization phase for the IVF vector index creation

IVF Index Centroids Creation The K-means clustering phase that computes the cluster
centroids on a sample of base table vectors

IVF Index Centroid Partitions Creation Centroids assignment phase for the base table vectors

IVF Index Creation Completed IVF vector index creation completed

Example:

exec DBMS_VECTOR.GET_INDEX_STATUS('VECTOR_USER','VIDX_HNSW');

Index objn: 74745 
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Stage: HNSW Index Loading Vectors 
Percentage: 80%

ENABLE_CHECKPOINT

Purpose: To enable the Checkpoint feature for a given HNSW index user and HNSW index
name.

Note:

This procedure only allows the index to create checkpoints. The checkpoint is
created as part of the next HNSW graph refresh.

The INDEX_NAME clause is optional. If you do not specify the index name, then this procedure
enables the Checkpoint feature for all HNSW indexes under the given user.

Syntax:

DBMS_VECTOR.ENABLE_CHECKPOINT('INDEX_USER',['INDEX_NAME']);

Example 1: Using index name and index user:

DBMS_VECTOR.ENABLE_CHECKPOINT('VECTOR_USER','VIDX1');

Example 2: Using index user:

DBMS_VECTOR.ENABLE_CHECKPOINT('VECTOR_USER');

Note:

By default, HNSW checkpointing is enabled. You can disable it using the
DBMS_VECTOR.DISABLE_CHECKPOINT procedure.

DISABLE_CHECKPOINT

Purpose: To purge all older checkpoint data. This procedure disables the Checkpoint feature
for a given HNSW index user and HNSW index name. It also disables the creation of future
checkpoints as part of the HNSW graph refresh.

The INDEX_NAME clause is optional. If you do not specify the index name, then this
procedure disables the Checkpoint feature for all HNSW indexes under the given user.

Syntax:

DBMS_VECTOR.DISABLE_CHECKPOINT('INDEX_USER',['INDEX_NAME']);

Example 1: Using index name and index user:

DBMS_VECTOR.DISABLE_CHECKPOINT('VECTOR_USER','VIDX1');
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Example 2: Using index user:

DBMS_VECTOR.DISABLE_CHECKPOINT('VECTOR_USER');

INDEX_VECTOR_MEMORY_ADVISOR

Purpose: To determine the vector memory size needed for a particular vector index. This helps
you evaluate the number of indexes (HNSW or IVF) that can fit for each simulated vector
memory size.

Syntax:

• Using the number and type of vector dimensions that you want to store in your vector
index.

DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    INDEX_TYPE, 
    NUM_VECTORS, 
    DIM_COUNT, 
    DIM_TYPE, 
    PARAMETER_JSON, 
    RESPONSE_JSON);

• Using the table and vector column on which you want to create your vector index:

DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    TABLE_OWNER, 
    TABLE_NAME, 
    COLUMN_NAME, 
    INDEX_TYPE, 
    PARAMETER_JSON, 
    RESPONSE_JSON);

INDEX_TYPE can be one of the following:

• IVF for IVF vector indexes

• HNSW for HNSW vector indexes

PARAMETER_JSON can have only one of the following form:

• PARAMETER_JSON=>{"accuracy":value}
• INDEX_TYPE=>IVF, parameter_json=>{"neighbor_partitions":value}
• INDEX_TYPE=>HNSW, parameter_json=>{"neighbors":value}

Note:

You cannot specify values for accuracy along with neighbor_partitions or
neighbors.

Example 1: Using neighbors in the parameters list:

exec DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    INDEX_TYPE=>'HNSW', 
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    NUM_VECTORS=>10000, 
    DIM_COUNT=>768, 
    DIM_TYPE=>'FLOAT32', 
    PARAMETER_JSON=>'{"neighbors":128}', 
    RESPONSE_JSON=>:response_json); 

Suggested vector memory pool size: 59918628 Bytes

Example 2: Using accuracy in the parameters list:

exec DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    INDEX_TYPE=>'HNSW', 
    NUM_VECTORS=>10000, 
    DIM_COUNT=>768, 
    DIM_TYPE=>'FLOAT32', 
    PARAMETER_JSON=>'{"accuracy":90}', 
    RESPONSE_JSON=>:response_json); 

Suggested vector memory pool size: 53926765 Bytes

Example 3: Using the table and vector column on which you want to create the vector
index:

exec DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    'VECTOR_USER', 
    'VECTAB', 
    'DATA_VECTOR', 
    'HNSW', 
    RESPONSE_JSON=>:response_json); 

Using default accuracy: 90% 
Suggested vector memory pool size: 76396251 Bytes

Related Topics

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

Manage Hybrid Vector Indexes
Learn how to manage a hybrid vector index, which is a single index for searching by similarity
and keywords, to enhance the accuracy of your search results.

• Understand Hybrid Vector Indexes
A hybrid vector index inherits all the information retrieval capabilities of Oracle Text search
indexes and leverages the semantic search capabilities of Oracle AI Vector Search vector
indexes.

• Guidelines and Restrictions for Hybrid Vector Indexes
Review these guidelines and the current set of restrictions when working with hybrid vector
indexes.
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• CREATE HYBRID VECTOR INDEX
Use the CREATE HYBRID VECTOR INDEX SQL statement to create a hybrid vector index,
which allows you to index and query documents using a combination of full-text search and
vector similarity search.

• ALTER INDEX
Use the ALTER INDEX SQL statement to modify an existing hybrid vector index.

Understand Hybrid Vector Indexes
A hybrid vector index inherits all the information retrieval capabilities of Oracle Text search
indexes and leverages the semantic search capabilities of Oracle AI Vector Search vector
indexes.

Hybrid vector indexes allow you to index and query documents using a combination of full-text
search and semantic vector search. A hybrid vector index is a class of specialized Domain
Index that combines the existing Oracle Text indexing data structures and vector indexing data
structures into one unified structure. A single index contains both textual and vector fields for a
document, enabling you to perform a combination of keyword search and vector search
simultaneously.

The purpose of a hybrid vector index is to enhance search relevance of an Oracle Text index
by allowing users to search by both vectors and keywords in various combinations, using out-
of-the-box and custom scoring techniques. By integrating traditional keyword-based text
search with vector-based similarity search, you can improve the overall search experience and
provide users with more accurate information.

When to Use a Hybrid Vector Index

Consider using a hybrid vector index for hybrid search scenarios where your query requires
information that is semantically similar but pertains to a specific focus area, that is, involves a
particular organization, user name, product code, technical term, date, or time. For example, a
typical hybrid search query can be to find "top 10 instances of stock fraud for ABC
Corporation".

Such a query involves two separate components:

• One where you want to identify the notion of "stock fraud"

• The second where you want to narrow the results to focus only on "ABC Corporation"

Pure keyword search may return results that specifically contain the query words like "stock",
"fraud", "ABC", or "Corporation" because it focuses on matching the exact keywords or
surface-level representation of words or phrases with tokenized terms in a text index.
Therefore, keyword search alone may not be suitable here because it can overlook the
semantic meaning behind the words in our query, especially if the exact terms are not present
in the content.

Pure vector search focuses on understanding the meaning and context of words or phrases
rather than just matching keywords. Vector search considers semantic relationship between
the query words, so it may include more contextually-relevant results like "corporate fraud",
"stock market manipulation", "stock misconduct", "financial irregularities", or "lawsuits in the
financial sector". Vector search also may not be suitable here because it can include results
about the broader topic of stock fraud involving ABC or similar organizations, especially if the
exact phrase "stock fraud for ABC Corporation" is not present in the content.

Hybrid search can address both components of such a query by running keyword search and
vector search on the same data and then combining the two search results into a single result
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set. In this way, you can utilize the strengths of both text indexes and vector indexes to retrieve
the most relevant results.

Why Choose a Hybrid Vector Index?

Let us summarize the advantages of a hybrid vector index.

• Higher recall compared to pure vector search or keyword search:

As discussed earlier, hybrid search lets you combine the power of Oracle AI Vector Search
and Oracle Text Search to provide more accurate and personalized information. Keyword
search or vector search alone may not be relevant in complex search scenarios and may
lead to a lot of spurious results.

• Mitigates the downsides of chunking:

Vector embedding models usually impose limits on the size of input text, which forces large
documents to be split into smaller chunks of data for semantic search (as explained in 
Understand the Stages of Data Transformations). A chunk can lose broader context of the
original document due to truncation, which may lead to missed results. A hybrid vector
index helps to restore the entire context of each document by performing textual search at
the document level.

• Simple to deploy and manage compared to maintaining independent indexes:

A hybrid vector index is a single domain index that can maintain text and vectors with DML.
Both keyword search and vector search are performed on all documents, and then the two
search results are combined and scored to return a unified result set. It provides an end-to-
end indexing pipeline that automatically transforms your input data for vector search
alongside keyword search, thereby enhancing the indexing performance. This index
exposes optional preferences to configure indexing parameters, but it is not required.

Here is an example of the hybrid vector index DDL:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on
  DOCS(file_name) 
  PARAMETERS ('MODEL MY_INDB_MODEL');

Here, a hybrid vector index named my_hybrid_idx is created on the file_name column of
the DOCS table. The embedding model used for vector generation is an in-database ONNX
format model named MY_INDB_MODEL.

The preceding example shows the minimum input requirements for index creation. For
complete syntax, see CREATE HYBRID VECTOR INDEX.

• Unified query API to search by vectors and keywords:

A single SEARCH API (available with the DBMS_HYBRID_VECTOR PL/SQL package) lets you
specify both a traditional CONTAINS query on document text indexes and a
VECTOR_DISTANCE query on vectorized chunk indexes. You can switch between keyword-
only, vector-only, and hybrid search modes to retrieve the best documents or chunks.

Here is an example of hybrid search using the SEARCH API for our earlier "top 10
instances of stock fraud for ABC Corporation" scenario:

select DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name"     : "my_hybrid_idx",
            "vector":
                    { "search_text" : "stock fraud" },
            "text"  :
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                    { "contains"    : "$ABC AND $Corporation" },
            "return":
                    { "topN"        : 10 }
          }')) 
from dual;

This query specifies the search text for vector search (using the vector distance function)
as stock fraud, the search text for keyword search (using the CONTAINS Oracle Text index
operator) as $ABC AND $Corporation, and the maximum number of rows to return as the
top 10. To understand how to use stem ($) and other CONTAINS operators, see Oracle Text
Reference.

For complete syntax, see Understand Hybrid Search.

Use Case Examples of a Hybrid Vector Index

Here are some use case scenarios to understand how you can implement a hybrid vector
index.

• Fraud detection:

You can identify fraudulent transactions that do not follow the exact patterns of known
fraud cases but are similar in behavior or context. In this case, a hybrid vector index can
combine traditional rule-based filters (such as transactions above a certain threshold or in
specific locations) with a vector index that compares transaction embeddings (which
capture features like timing, merchant type, and transaction history) to identify semantically
similar but not identical fraudulent patterns.

• Legal document analysis:

You need to search large volumes of legal documents for relevant cases and precedents.
You might first filter documents using traditional legal jargon and keyword searches. Then,
a vector index built from document embeddings can further filter previously identified
documents that are semantically similar, even if they use different terminology or legal
reasoning, ensuring comprehensive research.

You can perform the search in a different order if, for example, you are looking for cases
that are contextually similar to a landmark case but need to ensure that the cases also
include specific legal terminologies or citations. Here, the search can start with vector-
based search to retrieve cases that are semantically similar to the landmark case using
embeddings. Then, you can apply a traditional keyword-based filter to ensure that the
results include specific legal terms, statutes, or citations.

• Medical document analysis:

Medical research papers or articles either directly reference the terms of interest or do not
mention those keywords at all because these documents are written by researchers or
scientists in a distinct field of specialization. Here, you can switch between keyword-only
and vector-only searches to quickly locate documents that mention specific medical terms
of interest and specialization areas, respectively. You can also combine semantic search
with keyword search in a different order, starting with a vector-based semantic search
using embeddings to first identify papers that are contextually similar to your research
area. Then, apply a keyword-based filter to further refine the results to include only specific
references or medical terms that are critical to your research.

• HR recruitment:

You want to recruit new employees with strong technical skills in programming languages
but who also display certain personality and interpersonal traits. Here, you can first apply a
keyword-based filter to best match the technical skills (such as "Java" and "Database").
Then, you can perform a semantic search to identify the personality and interpersonal traits
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(such as "team work" and "leadership experience"). A hybrid search approach can help
recruiters to effectively shortlist candidates by scanning and comparing resumes or
portfolios with a dual focus.

Hybrid Vector Index Creation Overview

You create a hybrid vector index by simply specifying on which table and column to create it
along with some details, such as the local or remote location where all source documents are
stored (datastore), the ONNX in-database embedding model to use for generating
embeddings, and the type of vector index to create. You can specify additional parameters that
are discussed later in this chapter.

As illustrated in the following diagram, the hybrid vector index DDL creates a single index that
contains both textual fields (with derived text tokens) and vector fields (with extracted chunks
and corresponding embeddings) for each indexed document.

As you can see, the implementation of a hybrid vector index leverages the existing capabilities
of the Oracle Text search index and the Oracle AI Vector Search vector index. You can define
PL/SQL preferences to customize all these indexing pipeline stages for both the index types.

A document table DOCS contains IDs and corresponding document names or file names stored
in a location called MY_DS datastore.

The indexing pipeline starts with reading the documents from MY_DS (datastore), and then
passes the documents through a series of processing stages:

1. Filter (conversion of binary documents such as PDF, Word, or Excel to plain text)

2. Tokenizer (tokenization of data for keyword search) and Vectorizer (chunking and
embedding generation for vector search)
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3. Indexing Engine (creation of secondary tables)

As the system passes documents through this indexing engine, it populates and indexes a
set of secondary tables that are collectively part of a hybrid vector index.

The two main secondary tables created are:

• $I is the same structure as the existing Oracle Text index, which contains the inverted
indexed data with tokenized terms.

An Oracle Text index is created over a textual column based on your specifications.
For a deeper understanding of the Oracle Text indexing process, see Oracle Text
Application Developer's Guide.

• $VR contains the indexed data with generated chunks and corresponding embeddings.

A vector index is also created over the VECTOR column based on your
specifications. $VR also contains a ROWID column that maps back to the document
table's row IDs, and a DOCID column that links back to Oracle Text document-level IDs.
This creates a link between chunks, tokens, and documents.

You can directly examine the $VR table using the dictionary view <index
name>$VECTORS, which lets you query all row ids, chunks, and embeddings. See <index
name>$VECTORS.

Temporarily, the $D secondary table (not shown in the diagram) is also created to save a
copy of the document if the original document is not already in the database or needs
filtering. This table gets truncated after chunks are obtained.

Hybrid Vector Index Maintenance Operations

A hybrid vector index supports mostly all the traditional operations of an Oracle Text index,
such as MAINTENANCE AUTO , SYNC, or OPTIMIZE. For details, see Guidelines and Restrictions for
Hybrid Vector Indexes.

Related Topics

• Creating and Querying Oracle Text Indexes

• Perform Hybrid Search
Hybrid search is an advanced information retrieval technique that lets you search
documents by keywords and vectors, to achieve more relevant search results.

Guidelines and Restrictions for Hybrid Vector Indexes
Review these guidelines and the current set of restrictions when working with hybrid vector
indexes.

Index Creation Guidelines

A hybrid vector index is a single domain index that includes both Oracle Text search index and
Oracle AI Vector Search vector index. Any failure during the construction of one index type can
cause the entire index creation to fail as a whole. Therefore, you must adhere to all the
indexing guidelines that are individually applicable to a vector index and an Oracle Text search
index.

For example, if there is insufficient vector memory pool for the HNSW vector index or if there is
inadequate tablespace, then the vector index-related error can lead to a failure in creating a
hybrid vector index.

• If a destructive operation occurs, such as running Ctrl+C or shutting down the database,
then you must check the status of the index. If the index status does not display as valid,
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it indicates that the index may be corrupted or inconsistent, making it unsafe for use. In
such cases, you must recreate the index.

• If there are any errors in the hybrid vector index DDL or if there is any DDL failure, then
you must manually drop the index and create it again. Before using the index, ensure that
it is safe to use by checking the index status.

To check the status of your index, you can query the regular Oracle Text data dictionary views,
such as CTX_INDEXES and CTX_USER_INDEXES. See Oracle Text Reference.

Hybrid Vector Index Maintenance Operations

You can maintain your hybrid vector indexes just like an Oracle Text index. A hybrid vector
index supports mostly all the traditional operations of Oracle Text indexes, such as
Synchronization, Optimization, and Automatic Maintenance.

Here are some guidelines on maintaining indexes after DML operations on base tables:

• Default index maintenance:

A hybrid vector index runs in an automatic maintenance mode (MAINTENANCE AUTO), which
means that your DMLs are automatically synchronized into the index in the background at
optimal intervals.

You do not need to manually configure a maintenance type or synchronization type for
maintaining a hybrid vector index. However, if required, you can modify the default settings
to set any synchronization interval, specify a SYNC type (such as MANUAL, EVERY, or ON
COMMIT), or schedule any background synchronization job using the DBMS_SCHEDULER.

In an automatic maintenance mode, indexes are asynchronously maintained without any
user intervention. Oracle recommends that you periodically examine regular Oracle Text
views to know the status of all background maintenance events.

For information on these views, see Oracle Text Application Developer's Guide.

• Default index optimization:

A hybrid vector index runs with an automatic background Optimize Full job every midnight
"local" time. This job optimizes your index to defragment it and clean up any lazy deletes
from secondary tables such as the $I, $D, and $VR.

• Optimizing the $VR Table

For a hybrid vector index, you can also optimize only the $VR table. This optimization is run
in “section mode” for the new “section” (semantic index). This will compact the $VR table
only by removing any deleted ROWIDs.

CTX_DDL.OPTIMIZE_INDEX([schema.]index_name, ‘token_type’, 
                       ‘ctx_ddl.section_semantic_index’);

Oracle recommends you to explicitly run index optimization more frequently, especially if
your hybrid vector index involves a large number of inserts, updates, or deletes to base
tables. This is because frequent index synchronization can cause fragmentation of your
index, which can adversely affect query response time. You can reduce fragmentation and
index size by optimizing the index with CTX_DDL.OPTIMIZE_INDEX.

For information on how to configure optimization methods, see the index maintenance
preferences in CREATE HYBRID VECTOR INDEX.
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Guidelines to Run Direct SQL Queries on $VR

If you query secondary tables such as $VR directly before an index optimization job is run, you
may still see old data or deleted rows because these are ignored at query time by Oracle
provided search API (DBMS_HYBRID_VECTOR.SEARCH). For example, you may see lazy deletes
that mark the row IDs as deleted but are only removed from secondary tables after the index is
optimized.

Instead of examining the $VR table directly, you can use the data dictionary view <index
name>$VECTORS to work with the contents of the $VR table, and accordingly run direct SQL
queries on the view. This view lets you query the document table's row IDs by excluding all
lazy deletes (along with corresponding chunks and embeddings that are generated).

Note that the <index name>$VECTORS view resides in a user's schema. Therefore, if a hybrid
vector index is named IDX, then the view name is IDX$VECTORS.

For information on this view, see <index name>$VECTORS.

Guidelines for VPD Policy Protection

If you have applied an Oracle Virtual Private Database (VPD) policy to the base table, then you
must:

• Protect the entire hybrid vector index with the same VPD policy, including the $I, $VR,
and $D secondary tables.

• Protect the <index name>$VECTORS view (which is created on the $VR table) with the same
VPD policy.

• Ensure that any SQL queries run on the hybrid vector index and any direct SQL queries
run on secondary tables that are created within the schema also respect that VPD policy.

For information on how to use VPD to control data access in general, see Oracle Database
Security Guide.

Hybrid Vector Index DDL Restrictions

• The supported data types are CLOB, VARCHAR2, or BLOB. Textual columns with the IS JSON
check constraint are not supported.

Other data types such as JSON are currently not supported for a hybrid vector index.

• Creating a local hybrid vector index is not supported.

• You currently cannot import externally created chunks or vectors directly into the $VR table
of a hybrid vector index.

• Currently, only in-database ONNX embedding models are supported (not third-party
embedding models) to generate vector embeddings for a hybrid vector index.

• The HAMMING and JACCARD distance metrics are currently not supported with hybrid vector
indexes.

• The DML tracking support aligns with the behavior of the IVF and HNSW vector indexes
for the vector index part of a hybrid vector index.

• Creating materialized views based on the outputs produced by the VECTOR_CHUNKS,
UTL_TO_CHUNKS, UTL_TO_TEXT, and UTL_TO_SUMMARY functions is currently not supported.
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Note:

With the current set of restrictions, Oracle recommends that you create a hybrid
vector index in the following scenarios:

• If you want to search through textual documents (with CLOB, VARCHAR2, or BLOB
data types) in a hybrid search mode.

• If you want to alternatively switch between keyword search and semantic search
when querying textual data.

If you have the data that will only be searched semantically or if you want to manually
create your own third-party vector embeddings (using the DBMS_VECTOR and
DBMS_VECTOR_CHAIN third-party REST APIs), then use a vector index instead of
creating a hybrid vector index.

Related Topics

• Understand Hybrid Vector Indexes
A hybrid vector index inherits all the information retrieval capabilities of Oracle Text search
indexes and leverages the semantic search capabilities of Oracle AI Vector Search vector
indexes.

CREATE HYBRID VECTOR INDEX
Use the CREATE HYBRID VECTOR INDEX SQL statement to create a hybrid vector index, which
allows you to index and query documents using a combination of full-text search and vector
similarity search.

Purpose

To create a class of specialized Domain Index called a hybrid vector index.

A hybrid vector index is an Oracle Text SEARCH INDEX type that combines the existing Oracle
Text indexing data structures and vector indexing data structures into one unified structure. It is
a single domain index that stores both text fields and vector fields for a document. Both text
search and similarity search are performed on tokenized terms and vectors respectively. The
two search results are combined and scored to return a unified result set.

The purpose of a hybrid vector index is to enhance search relevance of an Oracle Text index
by allowing users to search by both vectors and keywords. By integrating traditional keyword-
based text search with vector-based similarity search, you can improve the overall search
experience and provide users with more accurate information.

Usage Notes

To create a hybrid vector index, you can provide minimal information such as:

• table or column on which you want to create the index

• in-database ONNX embedding model for generating embeddings

For cases where multiple columns or tables need to be indexed together, you can specify the
MULTI_COLUMN_DATASTORE or USER_DATASTORE preference.

All other indexing parameters are predefined to facilitate the indexing of documents without
requiring you to be an expert in any text processing, chunking, or embedding strategies. If
required, you can modify the predefined parameters using:
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• Vector search preferences for the vector index part of the index

• Text search preferences for the text index part of the index

• Index maintenance preferences for DML operations on the combined index

For detailed information on the creation process of a hybrid vector index or in general about
what hybrid vector indexes are, see Understand Hybrid Vector Indexes.

Note:

There are some key points to note when creating and using hybrid vector indexes.
See Guidelines and Restrictions for Hybrid Vector Indexes.

Syntax

CREATE HYBRID VECTOR INDEX [schema.]index_name ON 
  [schema.]table_name(column_name)
   PARAMETERS ('paramstring') 
  [FILTER BY filter_column[, filter_column]...]
  [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
  [PARALLEL n];

Here is an example DDL specified with only the minimum required parameters.

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column)
  PARAMETERS('MODEL my_embed_model');

More comprehensive examples are given at the end of this section.

Let us explore all the required and optional indexing parameters:

[schema.]index_name
Specify the name of the hybrid vector index to create.

[schema.]table_name(column_name)
Specify the name of the table and column on which you want to create the hybrid vector index.
You can create a hybrid vector index on one or more text columns with VARCHAR2, CLOB, and
BLOB data types.

Note:

You cannot create hybrid vector indexes on a text column that uses the IS JSON
check constraint.

Because the system can index most document formats, including HTML, PDF, Microsoft
Word, and plain text, you can load a supported type into the text column. For a complete list,
see Supported Document Formats.
For cases where multiple columns or tables need to be indexed together, specify a datastore
preference (described later in Text search preferences).
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PARAMETERS (paramstring)
Specify preferences in paramstring:

• Vector Search Preferences:

Configures the "vector index" part of a hybrid vector index, pertaining to processing input
for vector search.

Note:

You can either pass a minimal set of parameters (the required MODEL and the
optional VECTOR_IDXTYPE parameters) directly in the PARAMETERS clause or use a
vectorizer preference to specify a complete set of vector search parameters. You
cannot use both (directly set parameters along with vectorizer) in the
PARAMETERS clause.

– With MODEL and VECTOR_IDXTYPE directly specified:

CREATE HYBRID VECTOR INDEX [schema.]index_name ON 
  [schema.]table_name(column_name)
   PARAMETERS ('MODEL <model_name> 
               [VECTOR_IDXTYPE <vector_index_type>]') 
  [FILTER BY filter_column[, filter_column]...]
  [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
  [PARALLEL n];

Here, MODEL specifies the vector embedding model that you import into the database
for generating vector embeddings on your input data.

Note:

Currently, only ONNX in-database embedding models are supported.

VECTOR_IDXTYPE specifies the type of vector index to create, such as IVF (default) for
the Inverted File Flat (IVF) vector index and HNSW for the Hierarchical Navigable Small
World (HNSW) vector index. If you omit this parameter, then the IVF vector index is
created by default.

Creating a LOCAL index on an Hybrid Vector Index is supported when the underlying
index_type is IVF. An example is shown below:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
doc_table(text_column) 
parameters('MODEL my_doc_model
            VECTOR_IDXTYPE IVF')
LOCAL PARALLEL;
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Caution:

Creating a LOCAL index on Hybrid Vector Index when the underlying
index_type is HNSW, would throw an error before starting any document
processing (early failure).

– With the vectorizer preference:

A vectorizer preference is a JSON object that collectively holds all indexing
parameters related to chunking (UTL_TO_CHUNKS or VECTOR_CHUNKS), embedding
(UTL_TO_EMBEDDING, UTL_TO_EMBEDDINGS, or VECTOR_EMBEDDING), and vector index
(distance, accuracy, or vector_idxtype).

You use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE PL/SQL function to create a
vectorizer preference. To create a vectorizer preference, see 
DBMS_VECTOR_CHAIN.CREATE_PREFERENCE.

After creating a vectorizer preference, you can use the VECTORIZER parameter to pass
the preference name here. For example:

begin
  DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
    'my_vectorizer_pref',
     dbms_vector_chain.vectorizer,
    json('{
            "vector_idxtype":  "hnsw",
            "model"         :  "my_doc_model",
            "by"            :  "words",
            "max"           :  100,
            "overlap"       :  10,
            "split"         :  "recursively"
          }'
        ));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column) 
    parameters('VECTORIZER my_vectorizer_pref');

• Text Search Preferences:

Configures the "Oracle Text index" part of a hybrid vector index, pertaining to processing
input for keyword search.

These parameters define the text processing and tokenization stages of a hybrid vector
indexing pipeline. All these are the same set of parameters that you provide when working
with Oracle Text indexes alone.

[DATASTORE datastore_pref]
[STORAGE storage_pref]
[MEMORY memsize]
[STOPLIST stoplist]
[LEXER lexer_pref] 
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[FILTER filter_pref] 
[WORDLIST wordlist_pref]  
[SECTION GROUP section_group]

DATASTORE datastore_pref
Specify the name of your datastore preference. Use the datastore preference to
specify the local or remote location where your source files are stored.

If you want to index multiple columns or tables together, see 
MULTI_COLUMN_DATASTORE and USER_DATASTORE.

For a complete list of all datastore preferences, see Datastore Types.

Default: DIRECT_DATASTORE

STORAGE storage_pref
Specify the name of your storage preference for an Oracle Text search index. Use the
storage preference to specify how the index tables are stored. See Storage Types.

MEMORY memsize
Specify the amount of run-time memory to use for indexing.

memsize = number[K|M|G]

K is for kilobytes, M is for megabytes, and G is for gigabytes.

The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger than
the MAX_INDEX_MEMORY, you must reset this parameter with CTX_ADM.SET_PARAMETER to
be larger than or equal to memsize. See CTX_ADM.SET_PARAMETER.

The default for Oracle Text search index is 500 MB.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing
before flushing the index to disk. Specifying a large amount memory improves
indexing performance because there are fewer I/O operations and improves query
performance and maintenance, because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

STOPLIST stoplist
Specify the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST.

Default: CTXSYS.DEFAULT_STOPLIST

LEXER lexer_pref
Specify the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See Lexer
Types.

Default: CTXSYS.DEFAULT_LEXER

Chapter 6
Manage Hybrid Vector Indexes

6-60



FILTER filter_pref
Specify the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text. See Filter Types.

The default for binary text columns is NULL_FILTER. The default for other text columns
is AUTO_FILTER.

WORDLIST wordlist_pref
Specify the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See Wordlist Type.

SECTION GROUP section_group
Specify the name of your section group. Use section groups to create sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP.

Default: NULL_SECTION_GROUP
• Index Maintenance Preferences:

Configures the DML operations on the entire hybrid vector index, that is, how to
synchronize and optimize the index.

Because a hybrid vector index is basically an Oracle Text search index type, so all
maintenance-specific capabilities of an Oracle Text index are applicable.

[MAINTENANCE AUTO | MAINTENANCE MANUAL]
[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]

MAINTENANCE AUTO | MAINTENANCE MANUAL
Specify the maintenance type for synchronization of a hybrid vector index when there
are inserts, updates, or deletes to the base table. The maintenance type specified for
an index applies to all index partitions.

You can specify one of the following maintenance types:

Maintenance Type Description

MAINTENANCE AUTO This method sets your index to automatic
maintenance, that is, the index is automatically
synchronized in the background at optimal intervals.
You do not need to manually configure a SYNC type
or set any synchronization interval. The background
mechanism automatically determines the
synchronization interval and schedules background
SYNC.INDEX operations by tracking the DML queue.

MAINTENANCE
MANUAL

This method sets your index to manual maintenance.
This is a non-automatic maintenance
(synchronization) mode in which you can specify
SYNC types, such as MANUAL, EVERY, or ON COMMIT.
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SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specify the SYNC type for synchronization of a hybrid vector index when there are
inserts, updates, or deletes to the base table. These SYNC settings are applicable only
to the indexes that are set to manual maintenance.

Note:

By default, a hybrid vector index runs in an automatic maintenance mode
(MAINTENANCE AUTO), which means that your DMLs are automatically
synchronized into the index in the background at optimal intervals.
Therefore, you do not need to manually configure a SYNC type for
maintaining a hybrid vector index. However, if required, you can do so if you
want to modify the default settings for an index.

You can specify one of the SYNC methods:

SYNC Type Description

MANUAL With this method, automatic synchronization is not
provided. You must manually synchronize the index
using CTX_DDL.SYNC_INDEX.

EVERY interval-string Automatically synchronize the index at a regular
interval specified by the value of interval-string, which
takes the same syntax as that for scheduler jobs.
Automatic synchronization using EVERY requires that
the index creator have CREATE JOB privileges.
Ensure that interval-string is set to a considerable
time period so that any previous synchronization jobs
will have completed. Otherwise, the synchronization
job may stop responding. The interval-string
argument must be enclosed in double quotation
marks ('' '').

ON COMMIT Synchronize the index immediately after a commit.
The commit does not return until the sync is
complete.
The operation uses the memory specified with the
memory parameter.
This sync type works best when the STAGE_ITAB
index option is enabled, otherwise it causes
significant fragmentation of the main index, requiring
frequent OPTIMIZE calls.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument
using calendaring syntax values. These values are described in Oracle Database
PL/SQL Packages and Types Reference.
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Syntax:

SYNC [EVERY "interval-string"] MEMORY mem_size PARALLEL paradegree

For example, to sync the index at an interval of 20 seconds:

SYNC [EVERY "freq=secondly;interval=20"] MEMORY 500M PARALLEL 2

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string)
Specify OPTIMIZE to enable automatic background index optimization of a hybrid
vector index. You can specify any one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must
manually optimize the index with
CTX_DDL.OPTIMIZE_INDEX.

AUTO_DAILY This is the default setting. With OPTIMIZE
(AUTO_DAILY), the optimize FULL job is scheduled
to run midnight from 12 A.M. local time everyday.

EVERY "interval-
string"

Automatically runs optimize token at a regular
interval specified by the value interval-string, which
takes the same syntax as the scheduler jobs.
Ensure that interval-string is set to a considerable
time period so that the previous optimize jobs are
complete; otherwise, the optimize job might stop
responding. interval-string must be enclosed in
double quotes, and any single quote within interval-
string must be preceded by the escape character
with another single quote.

With AUTO_DAILY | EVERY "interval-string" setting, you can specify parallel
optimization.

Syntax:

OPTIMIZE [AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

For example, to optimize the index at an interval of 20 minutes:

OPTIMIZE [EVERY "freq=minutely;interval=20"] PARALLEL 2

FILTER BY filter_column
Specify the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter_column, on which the relational predicates are expected to be specified along with the
CONTAINS() predicate in a query.

• You can use these relational operators:

<, <=, =, >=, >, between, and LIKE (for VARCHAR2)
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• These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
CHAR, VARCHAR2 and VARCHAR2 types are supported only if the maximum length is specified
and does not exceed 249 bytes.

If the maximum length of a CHAR or VARCHAR2 column is specified in characters, for
example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/max_char_width), where
max_char_width is the maximum width of any character in the database character set.

For example, the maximum specified column length cannot exceed 62 characters, if the
database character set is AL32UTF8. The ADT attributes of supported types (CHAR, NUMBER,
DATE, VARCHAR2, or RAW) are also allowed.

An error is raised for all other data types. Expressions, for example, func(cola), and
virtual columns are not allowed.

• txt_column is allowed in the FILTER BY column list.

• DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column[desc|asc]
Specify one or more structured indexed columns by which you want to sort query results.
You can specify a list of structured oby_columns. These columns can only be of CHAR, NUMBER,
DATE, VARCHAR2, or RAW type. VARCHAR2 and RAW columns longer than 249 bytes are truncated to
the first 249 bytes. Expressions, for example func(cola), and virtual columns are not allowed.
The order of the specified columns matters. The ORDER BY clause in a query can contain:

• The entire ordered ORDER BY columns

• Only the prefix of the ordered ORDER BY columns

• The score followed by the prefix of the ordered ORDER BY columns

DESC sorts the results in a descending order (from highest to lowest), while ASC (default) sorts
the results in an ascending order (from lowest to highest).

[PARALLEL n]
Parallel indexing can improve index performance when you have multiple CPUs. To create an
index in parallel, use the PARALLEL clause with a parallel degree.
Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.
The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

Examples

• With vector search preferences directly specified:

In this example, only the required parameter model is specified in the PARAMETERS clause:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column)
  parameters('MODEL my_doc_model');
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In this example, both the parameters model and vector_idxtype are specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column)
  parameters('MODEL my_doc_model 
              VECTOR_IDXTYPE HNSW');

• With vector search preferences specified using VECTORIZER:

In this example, the vectorizer parameter is used in the PARAMETERS clause to specify the
my_vectorizer_spec preference:

begin
  DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
    'my_vectorizer_spec',
     dbms_vector_chain.vectorizer,
    json('{"vector_idxtype" :  "hnsw",
           "model"          :  "my_doc_model",
           "by"             :  "words",
           "max"            :  100,
           "overlap"        :  10,
           "split"          :  "recursively"}'));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column) 
  parameters('VECTORIZER my_vectorizer_spec');

• With text search and vector search preferences directly specified:

In this example, only the required Vector Search parameter MODEL is specified in the
PARAMETERS clause. Text Search parameters are also specified:

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column)
  parameters('MODEL my_doc_model
              DATASTORE my_datastore
              STORAGE my_storage
              STOPLIST my_stoplist
              LEXER my_lexer')
  ORDER BY docid asc;

• With text search and index maintenance preferences directly specified and vector
search preferences specified using VECTORIZER:

In this example, the VECTORIZER parameter is used to specify the my_vectorizer_spec
preference that holds vector search parameters. All the Text Search and Index
Maintenance preferences are directly specified.

begin
  DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
    'my_vectorizer_spec',
     dbms_vector_chain.vectorizer,
    json('{
            "vector_idxtype" :  "hnsw",
            "model"          :  "my_doc_model",
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            "by"             :  "words",
            "max"            :  100,
            "overlap"        :  10,
            "split"          :  "recursively"
         }'
        ));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_table(text_column) 
  parameters('VECTORIZER my_vectorizer_spec
              DATASTORE my_datastore
              STORAGE my_storage
              MEMORY 128M
              MAINTENANCE AUTO
              OPTIMIZE AUTO_DAILY
              STOPLIST my_stoplist
              LEXER my_lexer
              FILTER my_filter
              WORDLIST my_wordlist
              SECTION GROUP my_section_group')
  FILTER BY category, author
  ORDER BY score(10), score(20) desc  
  PARALLEL 3;

Related Topics

• Perform Hybrid Search

• Query Hybrid Vector Indexes End-to-End Example

ALTER INDEX
Use the ALTER INDEX SQL statement to modify an existing hybrid vector index.

Purpose

To make changes to hybrid vector indexes.

Syntax

ALTER INDEX [schema.]index_name REBUILD 
  [PARAMETERS('UPDATE VECTOR INDEX')]
  [PARALLEL n];

Note:

• If you do not specify the PARAMETERS clause, then all parts of the hybrid vector
index (both Oracle Text index and vector index) are recreated with existing
preference settings.

• Renaming hybrid vector indexes using the ALTER INDEX RENAME syntax is not
supported.
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[schema.]index_name
Specifies name of the hybrid vector index that you want to modify.

PARAMETERS(UPDATE VECTOR INDEX)
Recreates only the vector index part of a hybrid vector index with the original preference
settings.

PARALLEL
Specifies parallel indexing, as described for the CREATE HYBRID VECTOR INDEX statement.
For detailed information on the PARALLEL clause, see CREATE HYBRID VECTOR INDEX.

Examples

Here are some examples on how you can modify existing hybrid vector indexes:

• To rebuild all parts of a hybrid vector index:

Use the following syntax to rebuild all parts of a hybrid vector index (both Oracle Text index
and vector index) with the original preference settings:

Syntax:

ALTER INDEX index_name REBUILD [PARALLEL n];

Note that you do not need to specify any PARAMETERS clause when rebuilding both parts of
a hybrid vector index.

Example:

ALTER INDEX my_hybrid_idx REBUILD;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
       jt.chunk
FROM JSON_TABLE(
         DBMS_HYBRID_VECTOR.SEARCH(
           json(
             '{ "hybrid_index_name" : "my_hybrid_idx",
                "vector" : 
                 { "search_text"    : "vector based search capabilities",
                   "search_mode"    : "CHUNK"
                 },
                "return" : 
                 { "topN"           : 10 }
             }')
           ),
           '$[*]' COLUMNS doc_rowid  PATH '$.rowid',
                          chunk      PATH '$.chunk_text') jt;

• To rebuild only the vector index part:

Use the following syntax to rebuild only the vector index part of a hybrid vector index with
the original preference settings:

Syntax:

ALTER INDEX index_name REBUILD 
  PARAMETERS('UPDATE VECTOR INDEX') [PARALLEL n];
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Example:

ALTER INDEX my_hybrid_idx REBUILD 
  PARAMETERS('UPDATE VECTOR INDEX') PARALLEL 3;

SELECT (select id from doc_table where rowid = jt.doc_rowid) as doc,
       jt.chunk
FROM JSON_TABLE(
         DBMS_HYBRID_VECTOR.SEARCH(
           json(
             '{ "hybrid_index_name" : "my_hybrid_idx",
                "vector" : 
                 { "search_text"    : "vector based search capabilities",
                   "search_mode"    : "CHUNK"
                 },
                "return" : 
                 { "topN"           : 10 }
             }')
           ),
           '$[*]' COLUMNS doc_rowid  PATH '$.rowid',
                          chunk      PATH '$.chunk_text') jt;

Related Topics

• Oracle Text Reference

Vector Indexes in a Globally Distributed Database
Inverted File Flat (IVF) index and Hierarchical Navigable Small World (HNSW) index are
supported on sharded tables in a distributed database; however there are some
considerations.

Note:

• Global indexes are not supported on sharded tables; however, this limitation
does not exist for the global HNSW and IVF index.

• Hybrid Vector Indexes (HVI) are not currently supported on sharded tables.

• GDSCTL commands MOVE CHUNK, ADD CDB, and ADD SHARD will raise ORA-05118
if there are global vector indexes on sharded tables. Drop the global vector
indexes before performing these operations.

Inverted File Flat Index

Inverted File Flat Index (IVF Flat or simply IVF) is a partitioned-based index that lets you
balance high-search quality with reasonable speed.

You can create a local IVF index on vector columns in a sharded table. There is no syntax
change required.

• IVF indexes and HNSW indexes on a sharded table must be created on the shard catalog
database with SHARD DDL enabled.
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• The CREATE INDEX command is propagated as is to all of the shards by the shard
coordinator. The CREATE INDEX clause scope is the shard.

There is no syntax change to create an IVF index on a sharded table, when compared to the
syntax to create an IVF index on a non-sharded table.

CREATE VECTOR INDEX ivf_image 
     ON houses (image) 
 ORGANIZATION NEIGHBOR PARTITIONS WITH TARGET ACCURACY 95 
 DISTANCE EUCLIDEAN PARAMETERS 
 (type IVF, NEIGHBOR PARTITIONS 1000) PARALLEL 16;

Hierarchical Navigable Small World Index

There is no syntax change to create a Hierarchical Navigable Small World (HNSW) index on a
sharded table, when compared to the syntax to create an HNSW index on a non-sharded
table.

CREATE VECTOR INDEX hnsw_image 
     ON houses (image) 
 ORGANIZATION INMEMORY NEIGHBOR GRAPH
 WITH TARGET ACCURACY 95;
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7
Use SQL Functions for Vector Operations

There are a number of SQL functions and operators that you can use with vectors in Oracle AI
Vector Search.

Note:

You can also use PL/SQL packages to perform similar operations and additional
tasks. See Vector Search PL/SQL Packages.

• Vector Distance Functions and Operators
A vector distance function takes in two vector operands and a distance metric to compute
a mathematical distance between those two vectors, based on the distance metric
provided. You can optionally use shorthand distance functions and operators instead of
their corresponding distance functions.

• Chunking and Vector Generation Functions
Oracle AI Vector Search offers Vector Utilities, which provide the VECTOR_CHUNKS and
VECTOR_EMBEDDING SQL functions for chunking data and generating vector embedding,
respectively.

• Constructors, Converters, Descriptors, and Arithmetic Operators
Other basic vector operations for Oracle AI Vector Search involve creating, converting, and
describing vectors.

• JSON Compatibility with the VECTOR Data Type
The JSON data type supports the VECTOR type as a JSON scalar type. A VECTOR instance is
convertible to a JSON type instance and vice versa using the JSON constructor and the
VECTOR constructor, respectively.

Vector Distance Functions and Operators
A vector distance function takes in two vector operands and a distance metric to compute a
mathematical distance between those two vectors, based on the distance metric provided. You
can optionally use shorthand distance functions and operators instead of their corresponding
distance functions.

Distances determine similarity or dissimilarity between vectors.

• Vector Distance Metrics
Measuring distances in a vector space is at the heart of identifying the most relevant
results for a given query vector. That process is very different from the well-known keyword
filtering in the relational database world.

• VECTOR_DISTANCE
VECTOR_DISTANCE is the main function that you can use to calculate the distance between
two vectors.
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• L1_DISTANCE
L1_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
Manhattan distance between two vectors. It takes two vectors as input and returns the
distance between them as a BINARY_DOUBLE.

• L2_DISTANCE
L2_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
Euclidean distance between two vectors. It takes two vectors as input and returns the
distance between them as a BINARY_DOUBLE.

• COSINE_DISTANCE
COSINE_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates
the cosine distance between two vectors. It takes two vectors as input and returns the
distance between them as a BINARY_DOUBLE.

• INNER_PRODUCT
INNER_PRODUCT calculates the inner product of two vectors. It takes two vectors as input
and returns the inner product as a BINARY_DOUBLE. INNER_PRODUCT(<expr1>, <expr2>) is
equivalent to -1 * VECTOR_DISTANCE(<expr1>, <expr2>, DOT).

• HAMMING_DISTANCE
HAMMING_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates
the hamming distance between two vectors. It takes two vectors as input and returns the
distance between them as a BINARY_DOUBLE.

• JACCARD_DISTANCE
JACCARD_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates
the jaccard distance between two vectors. It takes two BINARY vectors as input and returns
the distance between them as a BINARY_DOUBLE.

Related Topics

• Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector.
Naturally, the comparison is done using a particular distance metric but what is important is
the result set of your top closest vectors, not the distance between them.

• Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

Vector Distance Metrics
Measuring distances in a vector space is at the heart of identifying the most relevant results for
a given query vector. That process is very different from the well-known keyword filtering in the
relational database world.

When working with vectors, there are several ways you can calculate distances to determine
how similar, or dissimilar, two vectors are. Each distance metric is computed using different
mathematical formulas. The time it takes to calculate the distance between two vectors
depends on many factors, including the distance metric used as well as the format of the
vectors themselves, such as the number of vector dimensions and the vector dimension
formats. Generally it's best to match the distance metric you use to the one that was used to
train the vector embedding model that generated the vectors.

• Euclidean and Euclidean Squared Distances
Euclidean distance reflects the distance between each of the vectors' coordinates being
compared—basically the straight-line distance between two vectors. This is calculated
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using the Pythagorean theorem applied to the vector's coordinates (SQRT(SUM((xi-
yi)2))).

• Cosine Similarity
One of the most widely used similarity metric, especially in natural language processing
(NLP), is cosine similarity, which measures the cosine of the angle between two vectors.

• Dot Product Similarity
The dot product similarity of two vectors can be viewed as multiplying the size of each
vector by the cosine of their angle. The corresponding geometrical interpretation of this
definition is equivalent to multiplying the size of one of the vectors by the size of the
projection of the second vector onto the first one, or vice versa.

• Manhattan Distance
This metric is calculated by summing the distance between the dimensions of the two
vectors that you want to compare.

• Hamming Distance
The Hamming distance between two vectors represents the number of dimensions where
they differ.

• Jaccard Similarity
The Jaccard similarity is used to determine the share of significant (non-zero) dimensions
(bit's position) common between two BINARY vectors.

• Custom Distance Function
JavaScript user-defined functions can be used to define a custom vector distance. This
provides greater flexibility in the types of distance equations that can be employed,
extending vector search functionality to a broader range of use cases.

Euclidean and Euclidean Squared Distances
Euclidean distance reflects the distance between each of the vectors' coordinates being
compared—basically the straight-line distance between two vectors. This is calculated using
the Pythagorean theorem applied to the vector's coordinates (SQRT(SUM((xi-yi)2))).

This metric is sensitive to both the vector's size and it's direction.

With Euclidean distances, comparing squared distances is equivalent to comparing distances.
So, when ordering is more important than the distance values themselves, the Squared
Euclidean distance is very useful as it is faster to calculate than the Euclidean distance
(avoiding the square-root calculation).

 

Chapter 7
Vector Distance Functions and Operators

7-3



 

Cosine Similarity
One of the most widely used similarity metric, especially in natural language processing (NLP),
is cosine similarity, which measures the cosine of the angle between two vectors.

The smaller the angle, the more similar are the two vectors. Cosine similarity measures the
similarity in the direction or angle of the vectors, ignoring differences in their size (also called
magnitude). The smaller the angle, the bigger is its cosine. So the cosine distance and the
cosine similarity have an inverse relationship. While cosine distance measures how different
two vectors are, cosine similarity measures how similar two vectors are.
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Dot Product Similarity
The dot product similarity of two vectors can be viewed as multiplying the size of each vector
by the cosine of their angle. The corresponding geometrical interpretation of this definition is
equivalent to multiplying the size of one of the vectors by the size of the projection of the
second vector onto the first one, or vice versa.

As illustrated in the following diagram, you project one vector on the other and multiply the
resulting vector sizes.

Incidentally, this is equivalent to the sum of the products of each vector's coordinate. Often,
you do not have access to the cosine of the two vector's angle, hence this calculation is easier.

Larger dot product values imply that the vectors are more similar, while smaller values imply
that they are less similar. Compared to using Euclidean distance, using the dot product
similarity is especially useful for high-dimensional vectors.

Note that normalizing vectors and using the dot product similarity is equivalent to using cosine
similarity. There are cases where dot product similarity is faster to evaluate than cosine
similarity, and conversely where cosine similarity is faster than dot product similarity. A
normalized vector is created by dividing each dimension by the norm (or length) of the vector,
such that the norm of the normalized vector is equal to 1.
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Manhattan Distance
This metric is calculated by summing the distance between the dimensions of the two vectors
that you want to compare.

Imagine yourself in the streets of Manhattan trying to go from point A to point B. A straight line
is not possible.

This metric is most useful for vectors describing objects on a uniform grid, such as city blocks,
power grids, or a chessboard. It can be useful for higher dimensional vector spaces too.
Compared to the Euclidean metric, the Manhattan metric is faster for calculations and you can
use it advantageously for higher dimensional vector spaces.
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Hamming Distance
The Hamming distance between two vectors represents the number of dimensions where they
differ.

For example, when using binary vectors, the Hamming distance between two vectors is the
number of bits you must change to change one vector into the other. To compute the Hamming
distance between two vectors A and B, you need to:

• Compare the position of each bit in the sequence. You do this by using an exclusive or
(also called the XOR bit operation) between A and B. This operation outputs 1 if the bits in
the sequence do not match, and 0 otherwise.

• Count the number of '1's in the resulting vector, the outcome of which is called the
Hamming weight or norm of that vector.

It's important to note that the bit strings need to be of equal length for the comparison to make
sense. The Hamming metric is mainly used with binary vectors for error detection over
networks.
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Jaccard Similarity
The Jaccard similarity is used to determine the share of significant (non-zero) dimensions (bit's
position) common between two BINARY vectors.

The Jaccard similarity is only applicable to BINARY vectors and only the non-zero bits of each
vector are considered.

The Jaccard similarity between vectors A and B is the calculation of the Hamming weight
(norm, or the number of '1's in the resulting vector) of the result of an AND bit operation between
A and B, divided by the Hamming weight of the result of an OR bit operation between A and B.

As shown in the included diagram of vectors A and B:

• The AND bit operation outputs a 1 if the bits in the sequence match a 1, and 0 otherwise.

• The OR bit operation outputs a 1 if at least one of the bits in the sequence matches a 1, and
0 otherwise.

The result of the calculation is from 0 to 1, where results approaching 1 are more similar. A
result of 0 means that the two vectors share no non-zero attributes while a result of 1 indicates
the two vectors share identical sets of non-zero attributes. In the included diagram, the two
vectors share 33% of the significant attributes.

While the Jaccard similarity indicates how similar two vectors are, the Jaccard distance
indicates the dissimilarity between the vectors. The Jaccard distance can be found by
subtracting the Jaccard similarity from 1. For example, two vectors with a Jaccard similarity of
0.25 have a Jaccard distance of 0.75. When determining distance, the meaning of the result is
opposite to that of a similarity calculation. A result of 0 indicates that the two vectors are
identical while a result of 1 indicates the vectors are completely disjoint, sharing no common
elements.
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Custom Distance Function
JavaScript user-defined functions can be used to define a custom vector distance. This
provides greater flexibility in the types of distance equations that can be employed, extending
vector search functionality to a broader range of use cases.

A custom distance function is created by a user-defined JavaScript function defined in a
Multilingual Engine (MLE) inline call specification. The signature of the function must match the
signature of existing built-in distance functions. As in, it must accept exactly two arguments of
type VECTOR and return a BINARY_DOUBLE. The function signature must also include the
DETERMINISTIC keyword. The following function definition provides an example of a custom
distance function, in this case implementing the Euclidean Squared distance:

CREATE OR REPLACE FUNCTION euclidean_sq_vector_distance("a" VECTOR, "b" 
VECTOR)
RETURN BINARY_DOUBLE
DETERMINISTIC PARALLEL_ENABLE
AS MLE LANGUAGE JAVASCRIPT PURE
{{
    let len = a.length;
    let sum = 0;
    for(let i = 0; i < len; i++) {
        const tmp = a[i] - b[i];
        sum += tmp * tmp;
    }
    return sum;
}};
/
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Custom distance functions can be used with HNSW vector indexes. If the degree of parallelism
in the vector index is greater than 1, the custom distance function must include the
PARALLEL_ENABLE clause. Upon index creation, a custom distance can be specified by name in
the DISTANCE clause. In queries, the custom distance can be used in the ORDER BY clause and
in the SELECT list. The distance function tied to a vector index can be viewed by querying the
VECSYS.VECTOR$INDEX view.

When used in the creation of an HNSW index, the PURE keyword must be specified in the MLE
call specification. The PURE clause indicates that the JavaScript program should be run in a
restricted execution context, which guarantees that the code will not modify stateful objects,
such as database tables or PL/SQL packages, regardless of database privileges currently in
effect. A user-defined function used to create a custom distance metric only handles
computations on function inputs, which do not require access to database state. Restricted
contexts provide an extra layer of security by prohibiting unwanted database modifications. For
more information on restricted execution contexts and the PURE keyword, see Oracle Database
JavaScript Developer's Guide.

In order to use a vector index dependent on a custom distance function, you must have
EXECUTE privileges on the function specified during index creation. You must also have EXECUTE
privileges on JAVASCRIPT. For vector indexes, only definer's rights are supported.

If the distance function is modified, the associated vector index will be in an UNUSABLE state.

Note:

The use of custom distance functions with IVF indexes is not currently supported.

Use the previously created custom distance function, euclidean_sq_custom_distance, to first
create a vector index:

CREATE TABLE custom_dist_tab( id NUMBER, data_vector VECTOR(2, FLOAT32));

INSERT INTO custom_dist_tab VALUES (1, vector('[1.1,2.2]', 2, float32));
INSERT INTO custom_dist_tab VALUES (2, vector('[2.2,3.3]', 2, float32));
INSERT INTO custom_dist_tab VALUES (3, vector('[3.3,4.4]', 2, float32));
INSERT INTO custom_dist_tab VALUES (4, vector('[4.4,5.5]', 2, float32));
INSERT INTO custom_dist_tab VALUES (5, vector('[5.5,6.6]', 2, float32));

CREATE VECTOR INDEX cust_dist_idx_hnsw ON custom_dist_tab (data_vector)
ORGANIZATION INMEMORY
NEIGHBOR GRAPH WITH TARGET ACCURACY 95
DISTANCE CUSTOM EUCLIDEAN_SQ_VECTOR_DISTANCE
PARALLEL 3;

The custom distance function can be referenced in similarity search queries in the ORDER BY
clause or in the SELECT list:

SELECT data_vector 
FROM custom_dist_tab
ORDER BY euclidean_sq_vector_distance(data_vector, VECTOR('[1, 2]'))
FETCH FIRST 5 ROWS ONLY;

SELECT
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  data_vector,
  euclidean_sq_vector_distance(data_vector, VECTOR('[1, 2]')) edist
FROM custom_dist_tab
ORDER BY edist
FETCH FIRST 5 ROWS ONLY;

See Also:

• Oracle Database JavaScript Developer's Guide for information about using inline
call specifications to publish JavaScript functions with the Multilingual Engine
(MLE)

VECTOR_DISTANCE
VECTOR_DISTANCE is the main function that you can use to calculate the distance between two
vectors.

Syntax

VECTOR_DISTANCE ( expr1 , expr2

, metric

)

Purpose

VECTOR_DISTANCE takes two vectors as parameters. You can optionally specify a distance
metric to calculate the distance. If you do not specify a distance metric, then the default
distance metric is cosine. If the input vectors are BINARY vectors, the default metric is
hamming.

You can optionally use the following shorthand vector distance functions:

• L1_DISTANCE
• L2_DISTANCE
• COSINE_DISTANCE
• INNER_PRODUCT
• HAMMING_DISTANCE
• JACCARD_DISTANCE
All the vector distance functions take two vectors as input and return the distance between
them as a BINARY_DOUBLE.

Note the following caveats:

• If you specify a metric as the third argument, then that metric is used.

• If you do not specify a metric, then the following rules apply:

– If there is a single column referenced in expr1 and expr2 as in:
VECTOR_DISTANCE(vec1, :bind), and if there is a vector index defined on vec1, then
the metric used when defining the vector index is used.
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If no vector index is defined on vec1, then the COSINE metric is used.

– If there are multiple columns referenced in expr1 and expr2 as in:
VECTOR_DISTANCE(vec1, vec2), or VECTOR_DISTANCE(vec1+vec2, :bind), then for all
indexed columns, if their metrics used in the definitions of the indexes are the same,
then that metric is used.

On the other hand, if the indexed columns do not have a common metric, or none of
the columns have an index defined, then the COSINE metric is used.

• In a similarity search query, if expr1 or expr2 reference an indexed column and you specify
a distance metric that conflicts with the metric specified in the vector index, then the vector
index is not used and the metric you specified is used to perform an exact search.

• Approximate (index-based) searches can be done if only one column is referenced by
either expr1 or expr2, and this column has a vector index defined, and the metric that is
specified in the vector_distance matches the metric used in the definition of the vector
index.

Parameters

• expr1 and expr2 must evaluate to vectors and have the same dimension format, storage
format, and number of dimensions.

If you use JACCARD_DISTANCE or the JACCARD metric, then expr1 and expr2 must evaluate
to BINARY vectors.

• This function returns NULL if either expr1 or expr2 is NULL.

• metric must be one of the following tokens :

– COSINE metric is the default metric. It calculates the cosine distance between two
vectors.

– DOT metric calculates the negated dot product of two vectors. The INNER_PRODUCT
function calculates the dot product, as in the negation of this metric.

– EUCLIDEAN metric, also known as L2 distance, calculates the Euclidean distance
between two vectors.

– EUCLIDEAN_SQUARED metric, also called L2_SQUARED, is the Euclidean distance without
taking the square root.

– HAMMING metric calculates the hamming distance between two vectors by counting the
number dimensions that differ between the two vectors.

– MANHATTAN metric, also known as L1 distance or taxicab distance, calculates the
Manhattan distance between two vectors.

– JACCARD metric calculates the Jaccard distance. The two vectors used in the query
must be BINARY vectors.

Shorthand Operators for Distances

Syntax

• expr1 <-> expr2
<-> is the Euclidean distance operator: expr1 <-> expr2 is equivalent to
L2_DISTANCE(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, EUCLIDEAN)

• expr1 <=> expr2
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<=> is the cosine distance operator: expr1 <=> expr2 is equivalent to
COSINE_DISTANCE(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, COSINE)

• expr1 <#> expr2
<#> is the negative dot product operator: expr1 <#> expr2 is equivalent to
-1*INNER_PRODUCT(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, DOT)

Examples Using Shorthand Operators for Distances

 '[1, 2]' <-> '[0,1]'

v1 <-> '[' || '1,2,3' || ']' is equivalent to v1 <-> '[1, 2, 3]'

v1 <-> '[1,2]' is equivalent to L2_DISTANCE(v1, '[1,2]')

v1 <=> v2 is equivalent to COSINE_DISTANCE(v1, v2)

 v1 <#> v2 is equivalent to -1*INNER_PRODUCT(v1, v2)

Examples

VECTOR_DISTANCE with metric EUCLIDEAN is equivalent to L2_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, EUCLIDEAN);

L2_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric COSINE is equivalent to COSINE_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, COSINE);

COSINE_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric DOT is equivalent to -1 * INNER_PRODUCT:

VECTOR_DISTANCE(expr1, expr2, DOT);

-1*INNER_PRODUCT(expr1, expr2);

VECTOR_DISTANCE with metric MANHATTAN is equivalent to L1_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, MANHATTAN);

L1_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric HAMMING is equivalent to HAMMING_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, HAMMING);

HAMMING_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric JACCARD is equivalent to JACCARD_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, JACCARD);
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JACCARD_DISTANCE(expr1, expr2);

L1_DISTANCE
L1_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
Manhattan distance between two vectors. It takes two vectors as input and returns the distance
between them as a BINARY_DOUBLE.

Syntax

L1_DISTANCE ( expr1 , expr2 )

Parameters

• expr1 and expr2 must evaluate to vectors and have the same format and number of
dimensions.

• L1_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

L2_DISTANCE
L2_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
Euclidean distance between two vectors. It takes two vectors as input and returns the distance
between them as a BINARY_DOUBLE.

Syntax

L2_DISTANCE ( expr1 , expr2 )

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• L2_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

COSINE_DISTANCE
COSINE_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
cosine distance between two vectors. It takes two vectors as input and returns the distance
between them as a BINARY_DOUBLE.

Syntax

COSINE_DISTANCE ( expr1 , expr2 )

Chapter 7
Vector Distance Functions and Operators

7-14



Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• COSINE_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

INNER_PRODUCT
INNER_PRODUCT calculates the inner product of two vectors. It takes two vectors as input and
returns the inner product as a BINARY_DOUBLE. INNER_PRODUCT(<expr1>, <expr2>) is
equivalent to -1 * VECTOR_DISTANCE(<expr1>, <expr2>, DOT).

Syntax

INNER_PRODUCT ( expr1 , expr2 )

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• INNER_PRODUCT returns NULL, if either expr1 or expr2 is NULL.

HAMMING_DISTANCE
HAMMING_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
hamming distance between two vectors. It takes two vectors as input and returns the distance
between them as a BINARY_DOUBLE.

Syntax

HAMMING_DISTANCE ( expr1 , expr2 )

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• HAMMING_DISTANCE returns NULL if either expr1 or expr2 is NULL.

JACCARD_DISTANCE
JACCARD_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
jaccard distance between two vectors. It takes two BINARY vectors as input and returns the
distance between them as a BINARY_DOUBLE.

Syntax

JACCARD_DISTANCE ( expr1 , expr2 )
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Parameters

• expr1 and expr2 must evaluate to BINARY vectors and have the same number of
dimensions. If either expression is not a BINARY vector, an error is raised.

• JACCARD_DISTANCE returns NULL if either expr1 or expr2 is NULL.

Chunking and Vector Generation Functions
Oracle AI Vector Search offers Vector Utilities, which provide the VECTOR_CHUNKS and
VECTOR_EMBEDDING SQL functions for chunking data and generating vector embedding,
respectively.

• VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings
that can be used with vector indexes or hybrid vector indexes.

• VECTOR_EMBEDDING
Use VECTOR_EMBEDDING to generate a single vector embedding for different data types
using embedding or feature extraction machine learning models.

Related Topics

• Vector Generation Examples
Run these end-to-end examples to see how you can generate vector embeddings, both
within and outside the database.

VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings that
can be used with vector indexes or hybrid vector indexes.

Syntax

VECTOR_CHUNKS ( chunks_table_arguments )

chunks_table_arguments::=

text_document

chunking_spec

chunking_spec::=

BY chunking_mode MAX integer_literal OVERLAP integer_literal

SPLIT

BY

split_characters_list LANGUAGE language_name

NORMALIZE normalization_spec EXTENDED
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split_characters_list::=

NONE

BLANKLINE

NEWLINE

SPACE

RECURSIVELY

SENTENCE

CUSTOM custom_split_characters_list

custom_split_characters_list

( string_literal

,

)

normalization_spec

NONE

ALL

custom_normalization_spec

custom_normalization_spec

( normalization_mode

,

)

normalization_mode

WHITESPACE

PUNCTUATION

WIDECHAR

chunking_mode::=

WORDS

CHARS

CHARACTERS

VOCABULARY vocabulary_name
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Purpose

VECTOR_CHUNKS takes a character value as the text_document argument and splits it into
chunks using a process controlled by the chunking parameters given in the optional
chunking_spec. The chunks are returned as rows of a virtual relational table. Therefore,
VECTOR_CHUNKS can only appear in the FROM clause of a subquery.

The returned virtual table has the following columns:

• CHUNK_OFFSET of data type NUMBER is the position of each chunk in the source document,
relative to the start of the document, which has a position of 1.

• CHUNK_LENGTH of data type NUMBER is the length of each chunk.

• CHUNK_TEXT is a segment of text that has been split off from text_document.

The data type of the CHUNK_TEXT column and the length unit used by the values of
CHUNK_OFFSET and CHUNK_LENGTH depend on the data type of text_document as listed in the
following table:

Table 7-1    Input and Output Data Type Details

Input Data Type Output Data Type Offset and Length Unit

VARCHAR2 VARCHAR2 byte
CHAR VARCHAR2 byte
CLOB VARCHAR2 character
NVARCHAR2 NVARCHAR2 byte
NCHAR NVARCHAR2 byte
NCLOB NVARCHAR2 character

Note:

• For more information about data types, see Data Types in the SQL Reference
Manual.

• The VARCHAR2 input data type is limited to 4000 bytes unless the
MAX_STRING_SIZE parameter is set to EXTENDED, which increases the limit to
32767.

Parameters

All chunking parameters are optional, and the default chunking specifications are automatically
applied to your chunk data.

When specifying chunking parameters for this API, ensure that you provide these parameters
only in the listed order.
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Table 7-2    Chunking Parameters Table

Parameter Description and Acceptable Values

BY Specifies the mode for splitting your data, that is, to split by counting the number of characters, words, or
vocabulary tokens.

Valid values:

• CHARACTERS (or CHARS):

Splits by counting the number of characters.
• WORDS:

Splits by counting the number of words.

Words are defined as sequences of alphabetic characters, sequences of digits, individual
punctuation marks, or symbols. For segmented languages without whitespace word boundaries
(such as Chinese, Japanese, or Thai), each native character is considered a word (that is, unigram).

• VOCABULARY:

Splits by counting the number of vocabulary tokens.

Vocabulary tokens are words or word pieces, recognized by the vocabulary of the tokenizer that your
embedding model uses. You can load your vocabulary file using the VECTOR_CHUNKS helper API
DBMS_VECTOR_CHAIN.CREATE_VOCABULARY.

Note: For accurate results, ensure that the chosen model matches the vocabulary file used for
chunking. If you are not using a vocabulary file, then ensure that the input length is defined within the
token limits of your model.

Default value: WORDS
MAX Specifies a limit on the maximum size of each chunk. This setting splits the input text at a fixed point

where the maximum limit occurs in the larger text. The units of MAX correspond to the BY mode, that is, to
split data when it reaches the maximum size limit of a certain number of characters, words, numbers,
punctuation marks, or vocabulary tokens.

Valid values:

• BY CHARACTERS: 50 to 4000 characters

• BY WORDS: 10 to 1000 words

• BY VOCABULARY: 10 to 1000 tokens

Default value: 100
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Table 7-2    (Cont.) Chunking Parameters Table

Parameter Description and Acceptable Values

SPLIT [BY] Specifies where to split the input text when it reaches the maximum size limit. This helps to keep related
data together by defining appropriate boundaries for chunks.

Valid values:

• NONE:

Splits at the MAX limit of characters, words, or vocabulary tokens.

• NEWLINE, BLANKLINE, and SPACE:

These are single-split character conditions that split at the last split character before the MAX value.

Use NEWLINE to split at the end of a line of text. Use BLANKLINE to split at the end of a blank line
(sequence of characters, such as two newlines). Use SPACE to split at the end of a blank space.

• RECURSIVELY:

This is a multiple-split character condition that breaks the input text using an ordered list of
characters (or sequences).

RECURSIVELY is predefined as BLANKLINE, NEWLINE, SPACE, NONE in this order:

1. If the input text is more than the MAX value, then split by the first split character.

2. If that fails, then split by the second split character.

3. And so on.

4. If no split characters exist, then split by MAX wherever it appears in the text.

• SENTENCE:

This is an end-of-sentence split condition that breaks the input text at a sentence boundary.

This condition automatically determines sentence boundaries by using knowledge of the input
language's sentence punctuation and contextual rules. This language-specific condition relies mostly
on end-of-sentence (EOS) punctuations and common abbreviations.

Contextual rules are based on word information, so this condition is only valid when splitting the text
by words or vocabulary (not by characters).

Note: This condition obeys the BY WORD and MAX settings, and thus may not determine accurate
sentence boundaries in some cases. For example, when a sentence is larger than the MAX value, it
splits the sentence at MAX. Similarly, it includes multiple sentences in the text only when they fit
within the MAX limit.

• CUSTOM:

Splits based on a custom list of characters strings, for example, markup tags. You can provide
custom sequences up to a limit of 16 split character strings, with a maximum length of 10 bytes
each.

Provide valid text literals as follows:

VECTOR_CHUNKS(c. doc, BY character SPLIT CUSTOM ('<html>' , '</html>')) vc
Default value: RECURSIVELY

OVERLAP Specifies the amount (as a positive integer literal or zero) of the preceding text that the chunk should
contain, if any. This helps in logically splitting up related text (such as a sentence) by including some
amount of the preceding chunk text.

The amount of overlap depends on how the maximum size of the chunk is measured (in characters,
words, or vocabulary tokens). The overlap begins at the specified SPLIT condition (for example, at
NEWLINE).

Valid value: 5% to 20% of MAX
Default value: 0
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Table 7-2    (Cont.) Chunking Parameters Table

Parameter Description and Acceptable Values

LANGUAGE Specifies the language of your input data.

This clause is important, especially when your text contains certain characters (for example, punctuations
or abbreviations) that may be interpreted differently in another language.

Valid values:

• NLS-supported language name or its abbreviation, as listed in Oracle Database Globalization
Support Guide.

• Custom language name or its abbreviation, as listed in Supported Languages and Data File
Locations. You use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper API to load
language-specific data (abbreviation tokens) into the database, for your specified language.

You must use double quotation marks (") for any language name with spaces. For example:

LANGUAGE "simplified chinese"
For one-word language names, quotation marks are not needed. For example:

LANGUAGE american
Default value: NLS_LANGUAGE from session

NORMALIZE Automatically pre-processes or post-processes issues (such as multiple consecutive spaces and smart
quotes) that may arise when documents are converted into text. Oracle recommends you to use a
normalization mode to extract high-quality chunks.

Valid values:

• NONE:

Applies no normalization.
• ALL:

Normalizes multi-byte (Unicode) punctuation to standard single-byte.
• Applies all supported normalization modes: PUNCTUATION, WHITESPACE, and WIDECHAR.

– PUNCTUATION:

Converts quotes, dashes, and other punctuation characters supported in the character set of the
text to their common ASCII form. For example:

* U+2013 (En Dash) maps to U+002D (Hyphen-Minus)
* U+2018 (Left Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+2019 (Right Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+201B (Single High-Reversed-9 Quotation Mark) maps to U+0027 (Apostrophe)

– WHITESPACE:

Minimizes whitespace by eliminating unnecessary characters.

For example, retain blanklines, but remove any extra newlines and interspersed spaces or tabs:
" \n \n " => "\n\n"

– WIDECHAR:

Normalizes wide, multi-byte digits and (a-z) letters to single-byte.

These are multi-byte equivalents for 0-9 and a-z A-Z, which can show up in Chinese,
Japanese, or Korean text.

Default value: NONE
EXTENDED Increases the output limit of a VARCHAR2 string to 32767 bytes, without requiring you to set the

MAX_STRING_SIZE parameter to EXTENDED.

If EXTENDED is present in chunking_spec, the maximum length of a CHUNK_TEXT column value is
32767 bytes. If it is absent, the maximum length is 4000 bytes if MAX_STRING_SIZE is set to STANDARD
and 32767 bytes if MAX_STRING_SIZE is set to EXTENDED.
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Examples

VECTOR_CHUNKS can be called for a single character value provided in a character literal or a
bind variable as shown in the following example:

COLUMN chunk_offset HEADING Offset FORMAT 999
COLUMN chunk_length HEADING Len    FORMAT 999
COLUMN chunk_text   HEADING Text   FORMAT a60

VARIABLE txt VARCHAR2(4000)
EXECUTE :txt := 'An example text value to split with VECTOR_CHUNKS, having over 10 words 
because the minimum MAX value is 10';

SELECT * FROM VECTOR_CHUNKS(:txt BY WORDS MAX 10);

SELECT * FROM VECTOR_CHUNKS('Another example text value to split with VECTOR_CHUNKS, 
having over 10 words because the minimum MAX value is 10' BY WORDS MAX 10);

To chunk values of a table column, the table needs to be joined with the VECTOR_CHUNKS call
using left correlation as shown in the following example:

CREATE TABLE documentation_tab (
  id   NUMBER,
  text VARCHAR2(2000));

INSERT INTO documentation_tab
   VALUES(1, 'sample');

COMMIT;

SET LINESIZE 100;
SET PAGESIZE 20;
COLUMN pos FORMAT 999;
COLUMN siz FORMAT 999;
COLUMN txt FORMAT a60;

PROMPT SQL VECTOR_CHUNKS
SELECT D.id id, C.chunk_offset pos, C.chunk_length siz, C.chunk_text txt
FROM documentation_tab D, VECTOR_CHUNKS(D.text
                                  BY words
                                  MAX 200
                                  OVERLAP 10
                                  SPLIT BY recursively
                                  LANGUAGE american
                                  NORMALIZE all) C; 

See Also:

• For a complete set of examples on each of the chunking parameters listed in the
preceding table, see Explore Chunking Techniques and Examples of the AI
Vector Search User's Guide.

• To run an end-to-end example scenario using this function, see Convert Text to
Chunks With Custom Chunking Specifications of the AI Vector Search User's
Guide.
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VECTOR_EMBEDDING
Use VECTOR_EMBEDDING to generate a single vector embedding for different data types using
embedding or feature extraction machine learning models.

Syntax

VECTOR_EMBEDDING (

schema .

model_name USING mining_attribute_clause )

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

Purpose

The function accepts the following types as input:

VARCHAR2 for text embedding models. Oracle automatically converts any other type to VARCHAR2
except for NCLOB, which is automatically converted to NVARCHAR2. Oracle does not expect
values whose textual representation exceeds the maximum size of a VARCHAR2, since
embedding models support only text that translates to a couple of thousand tokens. An
attribute with a type that has no conversion to VARCHAR2 results in a SQL compilation error.

For feature extraction models Oracle Machine Learning for SQL supports standard Oracle data
types except DATE, TIMESTAMP, RAW, and LONG. Oracle Machine Learning supports date type
(datetime, date, timestamp) for case_id, CLOB/BLOB/FILE that are interpreted as text columns,
and the following collection types as well:

• DM_NESTED_CATEGORICALS
• DM_NESTED_NUMERICALS
• DM_NESTED_BINARY_DOUBLES
• DM_NESTED_BINARY_FLOATS
The function always returns a VECTOR type, whose dimension is dictated by the model itself.
The model stores the dimension information in metadata within the data dictionary.

You can use VECTOR_EMBEDDING in SELECT clauses, in predicates, and as an operand for SQL
operations accepting a VECTOR type.
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Parameters

model_name refers to the name of the imported embedding model that implements the
embedding machine learning function.

mining_attribute_clause

• The mining_attribute_clause argument identifies the column attributes to use as
predictors for scoring. This is used as a convenience, as the embedding operator only
accepts single input value.

• USING * : all the relevant attributes present in the input (supplied in JSON metadata) are
used. This is used as a convenience. For an embedding model, the operator only takes
one input value as embedding models have only one column.

• USING expr [AS alias] [, expr [AS alias] ] : all the relevant attributes present in the comma-
separated list of column expressions are used. This syntax is consistent with the syntax of
other machine learning operators. You may specify more than one attribute, however, the
embedding model only takes one relevant input. Therefore, you must specify a single
mining attribute.

Example

The following example generates vector embeddings with "hello" as the input, utilizing the
pretrained ONNX format model my_embedding_model.onnx imported into the Database. For
complete example, see Import ONNX Models and Generate Embeddings

SELECT TO_VECTOR(VECTOR_EMBEDDING(model USING 'hello' as data)) AS embedding;
--------------------------------------------------------------------------------
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.69305634E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-002,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-001,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

See Also:

• Data Requirements for Machine Learning

• Vector Distance Metrics

Constructors, Converters, Descriptors, and Arithmetic Operators
Other basic vector operations for Oracle AI Vector Search involve creating, converting, and
describing vectors.

• Vector Constructors
TO_VECTOR() and VECTOR() are synonymous constructors of vectors. The functions take a
string of type VARCHAR2 or CLOB as input and return a vector as output.
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• Vector Serializers
FROM_VECTOR() and VECTOR_SERIALIZE() are synonymous serializers of vectors. The
functions take a vector as input and return a string of type VARCHAR2 or CLOB as output.

• VECTOR_NORM
VECTOR_NORM returns the Euclidean norm of a vector as a BINARY_DOUBLE. This value is
also called the magnitude or size and represents the Euclidean distance between the
vector and the origin. For a vector v = (v1, v2, ..., vn), the Euclidean norm is given by
||v|| = SQRT(v12 + v22 + ... + vn2).

• VECTOR_DIMENSION_COUNT
VECTOR_DIMENSION_COUNT returns the number of dimensions of a vector as a NUMBER.

• VECTOR_DIMS
VECTOR_DIMS returns the number of dimensions of a vector as a NUMBER. VECTOR_DIMS is
synonymous with VECTOR_DIMENSION_COUNT.

• VECTOR_DIMENSION_FORMAT
VECTOR_DIMENSION_FORMAT returns the storage format of the vector. It returns a VARCHAR2,
which can be one of the following values: INT8, FLOAT32, FLOAT64, or BINARY.

• Arithmetic Operators
Addition, subtraction, and multiplication can be applied to vectors dimension-wise in SQL
and PL/SQL.

• Aggregate Functions
The aggregate functions SUM and AVG can be applied to a series of vectors dimension-wise.

Vector Constructors
TO_VECTOR() and VECTOR() are synonymous constructors of vectors. The functions take a
string of type VARCHAR2 or CLOB as input and return a vector as output.

• TO_VECTOR
TO_VECTOR is a constructor that takes a string of type VARCHAR2, CLOB, BLOB, or JSON as
input, converts it to a vector, and returns a vector as output. TO_VECTOR also takes another
vector as input, adjusts its format, and returns the adjusted vector as output. TO_VECTOR is
synonymous with VECTOR.

• VECTOR
VECTOR is synonymous with TO_VECTOR.

TO_VECTOR
TO_VECTOR is a constructor that takes a string of type VARCHAR2, CLOB, BLOB, or JSON as input,
converts it to a vector, and returns a vector as output. TO_VECTOR also takes another vector as
input, adjusts its format, and returns the adjusted vector as output. TO_VECTOR is synonymous
with VECTOR.

Syntax

TO_VECTOR ( expr

, number_of_dimensions

, format

, storage_format

)
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Parameters

• expr must evaluate to one of:

– A string (of character types or CLOB) that represents a vector.

– A VECTOR.

– A BLOB. The BLOB must represent the vector's binary bytes.

– A JSON array. All elements in the array must be numeric.

If expr is NULL, the result is NULL.

The string representation of the vector must be in the form of an array of non-null numbers
enclosed with a bracket and separated by commas, such as [1, 3.4, -05.60, 3e+4].
TO_VECTOR converts a valid string representation of a vector to a vector in the format
specified. If no format is specified the default format is used.

• number_of_dimensions must be a numeric value that describes the number of dimensions
of the vector to construct. The number of dimensions may also be specified as an asterisk
(*), in which case the dimension is determined by expr.

• format must be one of the following tokens: INT8, FLOAT32, FLOAT64, BINARY, or *. This is
the target internal storage format of the vector. If * is used, the format will be FLOAT32.

Note that this behavior is different from declaring a vector column. When you declare a
column of type VECTOR(3, *), then all inserted vectors will be stored as is without a
change in format.

• storage_format must be one of the following tokens: DENSE, SPARSE, or *. If no storage
format is specified or if * is used, the following will be observed depending on the input
type:

– Textual input: the storage format will default to DENSE.

– JSON input: the storage format will default to DENSE.

– VECTOR input: there is no default and the storage format is not changed.

– BLOB input: there is no default and the storage format is not changed.

Examples

SELECT TO_VECTOR('[34.6, 77.8]');

TO_VECTOR('[34.6,77.8]')
---------------------------------------------------------
[3.45999985E+001,7.78000031E+001]

SELECT TO_VECTOR('[34.6, 77.8]', 2, FLOAT32);

TO_VECTOR('[34.6,77.8]',2,FLOAT32)
---------------------------------------------------------
[3.45999985E+001,7.78000031E+001]

SELECT TO_VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32);

TO_VECTOR('[34.6,77.8,-89.34]',3,FLOAT32)
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-----------------------------------------------------------
[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

SELECT TO_VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32, DENSE);

TO_VECTOR('[34.6,77.8,-89.34]',3,FLOAT32,DENSE)
---------------------------------------------------------------------
[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

Note:

• For applications using Oracle Client libraries prior to 23ai connected to Oracle
Database 23ai, use the TO_VECTOR function to insert vector data. For example:

INSERT INTO vecTab VALUES(TO_VECTOR('[1.1, 2.9, 3.14]'));
• Applications using Oracle Client 23ai libraries or Thin mode drivers can insert

vector data directly as a string or a CLOB. For example:

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]');

VECTOR
VECTOR is synonymous with TO_VECTOR.

Syntax

VECTOR ( expr

, number_of_dimensions

, format

, storage_format

)

Purpose

See TO_VECTOR for semantics and examples.

Note:

Applications using Oracle Client 23ai libraries or Thin mode drivers can insert vector
data directly as a string or a CLOB. For example:

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]');

Examples

SELECT VECTOR('[34.6, 77.8]');
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VECTOR('[34.6,77.8]')
---------------------------------------------------------
[3.45999985E+001,7.78000031E+001]

SELECT VECTOR('[34.6, 77.8]', 2, FLOAT32);

VECTOR('[34.6,77.8]',2,FLOAT32)
---------------------------------------------------------
[3.45999985E+001,7.78000031E+001]

SELECT VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32);

VECTOR('[34.6,77.8,-89.34]',3,FLOAT32)
-----------------------------------------------------------
[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

Vector Serializers
FROM_VECTOR() and VECTOR_SERIALIZE() are synonymous serializers of vectors. The functions
take a vector as input and return a string of type VARCHAR2 or CLOB as output.

• FROM_VECTOR
FROM_VECTOR takes a vector as input and returns a string of type VARCHAR2 or CLOB as
output.

• VECTOR_SERIALIZE
VECTOR_SERIALIZE is synonymous with FROM_VECTOR.

FROM_VECTOR
FROM_VECTOR takes a vector as input and returns a string of type VARCHAR2 or CLOB as output.

Syntax

FROM_VECTOR ( expr

RETURNING

CLOB

VARCHAR2

( size

BYTE

CHAR

)

FORMAT
SPARSE

DENSE

)

Purpose

FROM_VECTOR optionally takes a RETURNING clause to specify the data type of the returned
value.

If VARCHAR2 is specified without size, the size of the returned value size is 32767.

In SQL, you can optionally specify the storage format of the input vector in the FORMAT clause,
using the tokens SPARSE or DENSE. The return storage format cannot be specified in PL/SQL;
rather, the output format is determined by the storage format of the input vector.
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There is no support to convert to CHAR, NCHAR, and NVARCHAR2.

FROM_VECTOR is synonymous with VECTOR_SERIALIZE.

Parameters

expr must evaluate to a vector. The function returns NULL if expr is NULL.

Examples

• SELECT FROM_VECTOR(TO_VECTOR('[1, 2, 3]') );

Result:

FROM_VECTOR(TO_VECTOR('[1,2,3]'))

–---------------------------------------------------------------
[1.0E+000,2.0E+000,3.0E+000] 

1 row selected.

• SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) );

Result:

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32))
------------------------------------------------------------------

[1.10000002E+000,2.20000005E+000,3.29999995E+000] 

1 row selected.

• SELECT FROM_VECTOR( TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING 
VARCHAR2(1000));

Result:

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32)RETURNINGVARCHAR2(1000))
---------------------------------------------------------------------------
-----

[1.10000002E+000,2.20000005E+000,3.29999995E+000] 

1 row selected.

• SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING 
CLOB );

Result:

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32)RETURNINGCLOB)
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---------------------------------------------------------------------------
-----

[1.10000002E+000,2.20000005E+000,3.29999995E+000] 

1 row selected.

Note:

• Applications using Oracle Client 23ai libraries or Thin mode drivers can fetch
vector data directly, as shown in the following example:

SELECT dataVec FROM vecTab;
• For applications using Oracle Client 23ai libraries prior to 23ai connected to

Oracle Database 23ai, use the FROM_VECTOR to fetch vector data, as shown by
the following example:

SELECT FROM_VECTOR(dataVec) FROM vecTab;

VECTOR_SERIALIZE
VECTOR_SERIALIZE is synonymous with FROM_VECTOR.

Syntax

VECTOR_SERIALIZE ( expr

RETURNING

CLOB

VARCHAR2

( size

BYTE

CHAR

)

FORMAT
SPARSE

DENSE

)

Purpose

See FROM_VECTOR for semantics and examples.

Examples

• SELECT VECTOR_SERIALIZE(VECTOR('[1.1,2.2,3.3]',3,FLOAT32));

Result:

VECTOR_SERIALIZE(VECTOR('[1.1,2.2,3.3]',3,FLOAT32))
---------------------------------------------------------------
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.
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• SELECT VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32) RETURNING 
VARCHAR2(1000));

Result:

VECTOR_SERIALIZE(VECTOR('[...]',3,FLOAT32)RETURNINGVARCHAR2(1000))
------------------------------------------------------------------
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

• SELECT VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32) RETURNING 
CLOB);

Result:

VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32)RETURNINGCLOB)
--------------------------------------------------------
[1.10000002E+000,2.20000005E+000,3.29999995E+000] 

1 row selected.

VECTOR_NORM
VECTOR_NORM returns the Euclidean norm of a vector as a BINARY_DOUBLE. This value is also
called the magnitude or size and represents the Euclidean distance between the vector and
the origin. For a vector v = (v1, v2, ..., vn), the Euclidean norm is given by ||v|| =
SQRT(v12 + v22 + ... + vn2).

Syntax

VECTOR_NORM ( expr )

Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Example

SELECT VECTOR_NORM( TO_VECTOR('[4, 3]', 2, FLOAT32) );

VECTOR_NORM(TO_VECTOR('[4,3]',2,FLOAT32))
____________________________________________
5.0
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VECTOR_DIMENSION_COUNT
VECTOR_DIMENSION_COUNT returns the number of dimensions of a vector as a NUMBER.

Syntax

VECTOR_DIMENSION_COUNT ( expr )

Purpose

VECTOR_DIMENSION_COUNT is synonymous with VECTOR_DIMS.

Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Example

SELECT VECTOR_DIMENSION_COUNT( TO_VECTOR('[34.6, 77.8]', 2, FLOAT64) );

VECTOR_DIMENSION_COUNT(TO_VECTOR('[34.6,77.8]',2,FLOAT64))
----------------------------------------------------------
2                           

VECTOR_DIMS
VECTOR_DIMS returns the number of dimensions of a vector as a NUMBER. VECTOR_DIMS is
synonymous with VECTOR_DIMENSION_COUNT.

Syntax

VECTOR_DIMS ( expr )

Purpose

Refer to VECTOR_DIMENSION_COUNT for full semantics.

VECTOR_DIMENSION_FORMAT
VECTOR_DIMENSION_FORMAT returns the storage format of the vector. It returns a VARCHAR2,
which can be one of the following values: INT8, FLOAT32, FLOAT64, or BINARY.

Syntax

VECTOR_DIMENSION_FORMAT ( expr )
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Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Examples

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8]', 2, FLOAT64));
FLOAT64

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9]', 3, FLOAT32));
FLOAT32

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9, 10]', 3, INT8));
SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9, 10]', 3, 
INT8))                           
                                                                        *
ERROR at line 1:
ORA-51803: Vector dimension count must match the dimension count specified in the column 
definition (actual: 4, required: 3).

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9.10]', 3, INT8));
VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6,77.8,9.10
--------------------------------------------------
INT8

SELECT TO_VECTOR('[34.6, 77.8, 9.10]', 3, INT8);
TO_VECTOR('[34.6,77.8,9.10]',3,INT8)
---------------------------------------------------
[3.5E+001,7.8E+001,9.0E+000]

Arithmetic Operators
Addition, subtraction, and multiplication can be applied to vectors dimension-wise in SQL and
PL/SQL.

Addition

Vector addition is often used in Natural Language Processing (NLP) where words are often
represented as vectors that capture their meaning in a numerical format. Vector addition is
used to combine these meanings and understand relationships between words, a task also
referred to as word analogy.

Given two vectors A=(a1, a2, a3) and B=(b1, b2, b3), C = A + B is computed as C =
(a1+b1, a2+b2, a3+b3).

Subtraction

Vector subtraction can be used in word analogy scenarios but is also useful in the context of
facial recognition. Each face can be represented by a vector of facial features (distance
between eyes, eye color, and so on). Subtracting one vector from another gives you the main
differences between the two faces, giving you the information needed to recognize whether
they are similar or not.

Given two vectors A=(a1, a2, a3) and B=(b1, b2, b3), C = A - B is computed as C = (a1-
b1, a2-b2, a3-b3).

Multiplication
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Vector multiplication of each corresponding coordinate of two vectors, or element-wise product,
is called the Hadamard product. The Hadamard product is often used in neural networks and
computer vision.

Given two vectors A=(a1, a2, a3) and B=(b1, b2, b3), the Hadamard product A*B is
computed as A*B = (a1*b1, a2*b2, a3*b3).

Semantics

Both sides of the operation must evaluate to vectors with matching dimensions and must not
be BINARY or SPARSE vectors. The resulting vector has the same number of dimensions as the
operands and the format is determined based on the formats of the inputs. If one side of the
operation is not a vector, an attempt is made automatically to convert the value to a vector. If
the conversion fails, an error is raised.

The format used for the result is ranked in the following order: flexible, FLOAT64, FLOAT32, then
INT8. As in, if either side of the operation has a flexible format, the result will be flexible,
otherwise, if either side has the format FLOAT64, the result will be FLOAT64, and so on.

Consider two vectors with the following values:

v1 = [1, 2, 3]
v2 = [10, 20, 30]

Using arithmetic operators on v1 and v2 would, for example, result in the following:

• v1 + v2 is [11, 22, 33]
• v1 - v2 is [-9, -18, -27]
• v1 * v2 is [10, 40, 90]
• v1 + NULL is NULL
If either side of the arithmetic operation is NULL, the result is NULL. In the case of dimension
overflow, an error is raised. For example, adding VECTOR('[1, 127]', 2, INT8) to
VECTOR('[1, 1]', 2, INT8) results in an error because 127+1=128, which overflows the INT8
format.

The use of division operators on vectors is not supported.

Examples

Word Analogy

Using word embeddings, suppose you want to find the relationship between "Rome" and
"Paris". You can take the vector for "Rome", subtract the vector for "Italy", and then add the
vector for "France". This results in a new vector that approximates the meaning of the word
"Paris". The calculation should be "Rome - Italy + France = Paris" using an ideal embedding
model.
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Basic Vector Arithmetic

SELECT VECTOR('[5, 10, 15]') - VECTOR('[2, 4, 6]');

VECTOR('[5,10,15]')-VECTOR('[2,4,6]')
------------------------------------------------------------
[3.0E+000,6.0E+000,9.0E+000]

SELECT VECTOR('[1, 2, 3]', 3, FLOAT64) + VECTOR('[4, 5, 6]', 3, FLOAT32) * 
'[2, 2, 2]';

VECTOR('[1,2,3]',3,FLOAT64)+VECTOR('[4,5,6]',3,FLOAT32)*'[2,2,2]'
------------------------------------------------------------------------------
--
[9.0E+000,1.2E+001,1.5E+001]

DECLARE
  v1 VECTOR := VECTOR('[10, 20, 30]', 3, INT8);
  v2 VECTOR := VECTOR('[6, 4, 2]', 3, INT8);
BEGIN
  DBMS_OUTPUT.PUT_LINE(TO_CHAR(v1 + v2));
  DBMS_OUTPUT.PUT_LINE(TO_CHAR(v1 - v2));
  DBMS_OUTPUT.PUT_LINE(TO_CHAR(v1 * v2));
END;  
/

Result:

[16,24,32]
[4,16,28]
[60,80,60]
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Aggregate Functions
The aggregate functions SUM and AVG can be applied to a series of vectors dimension-wise.

• AVG
The AVG function takes a vector expression as input and returns the average as a vector
with format FLOAT64.

• SUM
The SUM function takes a vector expression as input and returns the sum as a vector with
format FLOAT64.

AVG
The AVG function takes a vector expression as input and returns the average as a vector with
format FLOAT64.

Syntax

AVG ( expr )

Purpose

AVG is mainly used to create an overall representation (as in a centroid) for a vector set. In
applications like Natural Language Processing (NLP), you can compute the average of several
vectors to create a single centroid or overall representation. For example, to represent a
sentence, you might average the word embeddings of each word in the sentence. This can be
used for tasks like text classification, document similarity, or clustering.

 

 
The result of AVG with a vector expression is the equivalent of consecutively performing vector
addition operations on all non-NULL inputs and then dividing by the total number of non-NULL
inputs. The returned vector has the same number of dimensions as the input and has the
format FLOAT64. When the expression has a flexible number of dimensions, all inputs must
have the same number of dimensions within each aggregate group.
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The AVG function with vector expressions as input can be used as a single set aggregate or in
the GROUP BY clause. Using ROLLUP is also supported. The AVG function accepts vector
expressions as input for aggregate operations but cannot currently be applied to analytic
operations.

NULL vectors are ignored and are not counted when calculating the average vector. If all inputs
within an aggregate group are NULL, the result is NULL for that group. If the result overflows the
FLOAT64 maximum value, an error is raised, regardless of the format of the input vector type.

With vector inputs, using DISTINCT, CUBE, and GROUPING SETS is not supported. Also, BINARY
and SPARSE vectors cannot be supplied as input.

For the full definition and implementation of the AVG function, see Oracle Database SQL
Language Reference.

CREATE TABLE avg_t (v VECTOR, k1 NUMBER, k2 VARCHAR2(100));
INSERT INTO avg_t VALUES ('[2, 4, 6]', 2, 'even');
INSERT INTO avg_t VALUES ('[8, 10, 12]', 2, 'even');
INSERT INTO avg_t VALUES ('[1, 3, 5]', 3, 'odd');
INSERT INTO avg_t VALUES ('[7, 9, 11]', 3, 'odd');

SELECT AVG(v) v_avg FROM avg_t;

V_AVG
---------------------------------------------------
[4.5E+000,6.5E+000,8.5E+000]

SELECT AVG(v) v_avg, k1 FROM avg_t GROUP BY k1;

V_AVG                                    K1
---------------------------------------  ----------
[5.0E+000,7.0E+000,9.0E+000]             2
[4.0E+000,6.0E+000,8.0E+000]             3

SELECT AVG(v) v_avg FROM avg_t GROUP BY ROLLUP(k1, k2);

V_AVG
---------------------------------------------------
[5.0E+000,7.0E+000,9.0E+000]
[5.0E+000,7.0E+000,9.0E+000]
[4.0E+000,6.0E+000,8.0E+000]
[4.0E+000,6.0E+000,8.0E+000]
[4.5E+000,6.5E+000,8.5E+000]

SUM
The SUM function takes a vector expression as input and returns the sum as a vector with
format FLOAT64.

Syntax

SUM ( expr )
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Purpose

SUM is mainly used, in Natural Language Processing (NLP), to compute a representation of a
sentence or a document. It is common to sum the word embeddings of all words. The resulting
vector represents the entire text, allowing models to work with sentences instead of just words.

The following diagram illustrates the vector representation, in a 2D space, of word
embeddings. If you take S1, "The astronomer observed the stars", and S2, "The stargazer
watched the celestial bodies", you can observe that the corresponding vector sum of each
constituting word of each sentence (S1 and S2 in the diagram) are very close, for example, in
terms of cosine similarity. This means that the two sentences are very similar in meaning.

 

 
The result of SUM with a vector expression is the equivalent of consecutively performing vector
addition operations on all non-NULL inputs. The returned vector has the same number of
dimensions as the input and has the format FLOAT64. When the expression has a flexible
number of dimensions, all inputs must have the same number of dimensions within each
aggregate group.

The SUM function with vector expressions as input can be used as a single set aggregate or in
the GROUP BY clause. Using ROLLUP is also supported. The SUM function accepts vector
expressions as input for aggregate operations but cannot currently be applied to analytic
operations.

NULL vectors are ignored and are not counted when calculating the sum vector. If all inputs
within an aggregate group are NULL, the result is NULL for that group. If the result overflows the
FLOAT64 maximum value, an error is raised, regardless of the format of the input vector type.

With vector inputs, using DISTINCT, CUBE, and GROUPING SETS is not supported. Also, BINARY
and SPARSE vectors cannot be supplied as input.
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For the full definition and implementation of the SUM function, see Oracle Database SQL
Language Reference.

CREATE TABLE sum_t (v VECTOR, k1 NUMBER, k2 VARCHAR2(100));
INSERT INTO sum_t VALUES ('[2, 4, 6]', 2, 'even');
INSERT INTO sum_t VALUES ('[8, 10, 12]', 2, 'even');
INSERT INTO sum_t VALUES ('[1, 3, 5]', 3, 'odd');
INSERT INTO sum_t VALUES ('[7, 9, 11]', 3, 'odd');

SELECT SUM(v) v_sum FROM sum_t;

V_SUM
---------------------------------------------------
[1.8E+001,2.6E+001,3.4E+001]

SELECT SUM(v) v_sum, k1 FROM sum_t GROUP BY k1;

V_SUM                                    K1
---------------------------------------  ----------
[1.0E+001,1.4E+001,1.8E+001]             2
[8.0E+000,1.2E+001,1.6E+001]             3

SELECT SUM(v) v_sum FROM sum_t GROUP BY ROLLUP(k1, k2);

V_SUM
---------------------------------------------------
[1.0E+001,1.4E+001,1.8E+001]
[1.0E+001,1.4E+001,1.8E+001]
[8.0E+000,1.2E+001,1.6E+001]
[8.0E+000,1.2E+001,1.6E+001]
[1.8E+001,2.6E+001,3.4E+001]

CREATE TABLE sum_diff_dim_t (v VECTOR, k1 NUMBER, k2 VARCHAR2(100));
INSERT INTO sum_diff_dim_t VALUES ('[2, 4, 6]', 2, 'even');
INSERT INTO sum_diff_dim_t VALUES ('[8, 10, 12]', 2, 'even');
INSERT INTO sum_diff_dim_t VALUES ('[1, 3, 5, 7]', 3, 'odd');
INSERT INTO sum_diff_dim_t VALUES ('[9, 11, 13, 15]', 3, 'odd');

SELECT SUM(v) v_sum, k2 FROM sum_diff_dim_t GROUP BY k2;

V_SUM                                    K2
---------------------------------------  ----------
[1.0E+001,1.4E+001,1.8E+001]             even
[1.0E+001,1.4E+001,1.8E+001,2.2E+001]    odd

SELECT SUM(v) v_sum FROM sum_diff_dim_t;

ERROR:
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ORA-51808: SUM(vector) requires all vectors to have the same dimension count.
Encountered (3, 4).

JSON Compatibility with the VECTOR Data Type
The JSON data type supports the VECTOR type as a JSON scalar type. A VECTOR instance is
convertible to a JSON type instance and vice versa using the JSON constructor and the
VECTOR constructor, respectively.

Note that when converting a JSON array to a VECTOR type instance, the numbers in the JSON
array do not have to be of the same numeric type. The input data types do not change the
default numeric type for the vector and the VECTOR constructor includes an argument to set the
format. Using the VECTOR constructor (or TO_VECTOR) with a JSON data type instance will
succeed as long as there is no conversion error.

The following SQL/JSON functions and item methods are compatible for use with the VECTOR
data type:

• JSON_VALUE
• JSON_OBJECT
• JSON_ARRAY
• JSON_TABLE
• JSON_SCALAR
• JSON_TRANSFORM
• JSON_SERIALIZE
• type()
• .vector()
• .string()
• .stringify()

See Also:

• Oracle Database JSON Developer’s Guide for more information about VECTOR as
a data type for JSON data

• Oracle Database JSON Developer’s Guide for information about SQL/JSON path
expression item methods, including vector()
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8
Query Data With Similarity and Hybrid
Searches

Use Oracle AI Vector Search native SQL operations from your development environment to
combine similarity with relational searches.

• Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector.
Naturally, the comparison is done using a particular distance metric but what is important is
the result set of your top closest vectors, not the distance between them.

• Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

• Perform Multi-Vector Similarity Search
Another major use-case of vector search is multi-vector search. Multi-vector search is
typically associated with a multi-document search, where documents are split into chunks
that are individually embedded into vectors.

• Perform Hybrid Search
Hybrid search is an advanced information retrieval technique that lets you search
documents by keywords and vectors, to achieve more relevant search results.

Perform Exact Similarity Search
A similarity search looks for the relative order of vectors compared to a query vector. Naturally,
the comparison is done using a particular distance metric but what is important is the result set
of your top closest vectors, not the distance between them.

As an example, and given a certain query vector, you can calculate its distance to all other
vectors in your data set. This type of search, also called flat search, or exact search, produces
the most accurate results with perfect search quality. However, this comes at the cost of
significant search times. This is illustrated by the following diagrams:

Figure 8-1    Exact Search
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With an exact search, you compare the query vector vq against every other vector in your
space by calculating its distance to each vector. After calculating all of these distances, the
search returns the nearest k of those as the nearest matches. This is called a k-nearest
neighbors (kNN) search.

For example, the Euclidean similarity search involves retrieving the top-k nearest vectors in
your space relative to the Euclidean distance metric and a query vector. Here's an example
that retrieves the top 10 vectors from the vector_tab table that are the nearest to
query_vector using the following exact similarity search query:

SELECT docID 
FROM vector_tab 
ORDER BY VECTOR_DISTANCE( embedding, :query_vector, EUCLIDEAN ) 
FETCH EXACT FIRST 10 ROWS ONLY;

In this example, docID and embedding are columns defined in the vector_tab table and
embedding has the VECTOR data type.

In the case of Euclidean distances, comparing squared distances is equivalent to comparing
distances. So, when ordering is more important than the distance values themselves, the
Euclidean Squared distance is very useful as it is faster to calculate than the Euclidean
distance (avoiding the square-root calculation). Consequently, it is simpler and faster to rewrite
the query like this:

SELECT docID 
FROM vector_tab 
ORDER BY VECTOR_DISTANCE( embedding, :query_vector, EUCLIDEAN_SQUARED) 
FETCH FIRST 10 ROWS ONLY;

Note:

The EXACT keyword is optional. If omitted while connected to an ADB-S instance, an
approximate search using a vector index is attempted if one exists. For more
information, see Perform Approximate Similarity Search Using Vector Indexes.

Note:

Ensure that you use the distance function that was used to train your embedding
model.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE
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Perform Approximate Similarity Search Using Vector Indexes
For a vector search to be useful, it needs to be fast and accurate. Approximate similarity
searches seek a balance between these goals.

• Understand Approximate Similarity Search Using Vector Indexes
For faster search speeds with large vector spaces, you can use approximate similarity
search using vector indexes.

• Optimizer Plans for Vector Indexes
Optimizer plans for HNSW and IVF indexes are described in the following sections.

• Approximate Similarity Search Examples
Review these examples to see how you can perform an approximate similarity search
using vector indexes.

Understand Approximate Similarity Search Using Vector Indexes
For faster search speeds with large vector spaces, you can use approximate similarity search
using vector indexes.

Using vector indexes for a similarity search is called an approximate search. Approximate
searches use vector indexes, which trade off accuracy for performance.

Approximate search for large vector spaces

When search quality is your high priority and search speed is less important, Exact Similarity
search is a good option. Search speed can be irrelevant for smaller vector spaces, or when
you perform searches with high performance servers. However, ML algorithms often perform
similarity searches on vector spaces with billions of embeddings. For example, the Deep1B
data-set contains 1B images generated by a Convolutional Neural Network (CNN). Computing
vector distances with every vector in the corpus to find Top-K matches at 100 percent accuracy
is very slow.

Fortunately, there are many types of approximate searches that you can perform using vector
indexes. Vector indexes can be less accurate, but they can consume less resources, and can
be more efficient. Unlike traditional database indexes, vector indexes are constructed and
perform searches using heuristic-based algorithms.

Because 100 percent accuracy cannot be guaranteed by heuristics, vector index searches use
target accuracy. Internally, the algorithms used for both index creation and index search are
doing their best to be as accurate as possible. However, you have the possibility to influence
those algorithms by specifying a target accuracy. When creating the index or searching it, you
can specify non-default target accuracy values either by specifying a percentage value, or by
specifying internal parameters values, depending on the index type you are using.

Target accuracy example

To better understand what is meant by target accuracy look at the following diagrams. The first
diagram illustrate a vector space where each vector is represented by a small cross. The one
in red represents your query vector.
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Running a top-5 exact similarity search in that context would return the five vectors shown on
the second diagram:

 

 
Depending on how your vector index was constructed, running a top-5 approximate similarity
search in that context could return the five vectors shown on the third diagram. This is because
the index creation process is using heuristics. So searching through the vector index may lead
to different results compared to an exact search:
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As you can see, the retrieved vectors are different and, in this case, they differ by one vector.
This means that, compared to the exact search, the similarity search retrieved 4 out of 5
vectors correctly. The similarity search has 80% accuracy compared to the exact similarity
search. This is illustrated on the fourth diagram:

 

 
Due to the nature of vector indexes being approximate search structures, it's possible that
fewer than K rows are returned in a top-K similarity search.

For information on how to set up your vector indexes, see Create Vector Indexes.

Optimizer Plans for Vector Indexes
Optimizer plans for HNSW and IVF indexes are described in the following sections.

• Optimizer Plans for HNSW Vector Indexes
A Hierarchical Navigable Small World Graph (HNSW) is a form of In-Memory Neighbor
Graph vector index. It is a very efficient index for vector approximate similarity search.
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• Optimizer Plans for IVF Vector Indexes
Inverted File Flat (IVF) is a form of Neighbor Partition Vector index. It is a partition-based
index that achieves search efficiency by narrowing the search area through the use of
neighbor partitions or clusters.

• Vector Index Hints
If the optimizer does not choose your existing index while running your query and you still
want that index to be used, you can rewrite your SQL statement to include vector index
hints.

Optimizer Plans for HNSW Vector Indexes
A Hierarchical Navigable Small World Graph (HNSW) is a form of In-Memory Neighbor Graph
vector index. It is a very efficient index for vector approximate similarity search.

In the simplest case, a query has a single table and it does not contain any relational filter
predicates or subqueries. The following query example illustrates this situation:

SELECT chunk_id, chunk_data
FROM doc_chunks
ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

The corresponding execution plan should look like the following, if the optimizer decides to use
the index (start from operation id 5):

Top-K similar vectors are first identified using the HNSW vector index. For each of them,
corresponding rows are identified in the base table and required selected columns are
extracted.

---------------------------------------------------------
| Id  | Operation                      | Name           |
---------------------------------------------------------
|   0 | SELECT STATEMENT               |                |
|*  1 |  COUNT STOPKEY                 |                |
|   2 |   VIEW                         |                |
|*  3 |    SORT ORDER BY STOPKEY       |                |
|   4 |     TABLE ACCESS BY INDEX ROWID| DOC_CHUNKS     |
|   5 |      VECTOR INDEX HNSW SCAN    | DOCS_HNSW_IDX5 |
---------------------------------------------------------

Note:

The Hierarchical Navigable Small World (HNSW) vector index structure contains
rowids of corresponding base table rows for each vector in the index.

However, your query may contain traditional relational data filters, as illustrated in the following
example:

SELECT chunk_id, chunk_data
FROM doc_chunks
WHERE doc_id=1
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ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

In that case, there are essentially two main alternatives for the optimizer to generate an
execution plan using an HNSW vector index. These two alternatives are called pre-filtering
and in-filtering.

The main difference between pre-filtering and in-filtering are:

• Pre-filtering runs the filtering evaluation on the base table first and only traverses the
HNSW vector index for corresponding vectors. This can be very fast if the filter predicates
are selective (that is, most rows filtered out).

• In-filtering, on the other hand, starts by traversing the HNSW vector index and invokes the
filtering only for each vector matching candidate. This can be better than pre-filtering when
more rows pass the filter predicates. In this case, the number of vector candidates to
consider, while traversing the HNSW vector index, might be many fewer than the number
of rows that pass the filters.

For both in-filtering and pre-filtering, the optimizer may choose to process projected columns
from your select list before or after the similarity search operation. If it does so after, this is
called a join-back operation. If it does so before, it is called a no-join-back operation. The
tradeoff between the two depends on the number of rows returned by the similarity search.

To illustrate these four possibilities, here are some typical execution plans:

Note:

Depending on the version you are using, you can find variations of these plans.
However, the idea stays the same, so the following plans are just for illustration
purposes.

Pre-filter with Join-back (Start from Operation id 9)

Filtered rowids are first identified in the base table and joined to the auxiliary mapping table
before the HNSW vector index identifies the relevant vectors. Relevant base table rows are
then identified and required selected columns are extracted.

------------------------------------------------------------------------------
--------------------------
| Id  | Operation                             | 
Name                                                   | 
------------------------------------------------------------------------------
--------------------------
|   0 | SELECT STATEMENT                      
|                                                        |
|*  1 |  COUNT STOPKEY                        
|                                                        |
|   2 |   VIEW                                
|                                                        |
|*  3 |    SORT ORDER BY STOPKEY              
|                                                        |
|*  4 |     TABLE ACCESS BY INDEX ROWID       | 
DOC_CHUNKS                                             |
|   5 |      VECTOR INDEX HNSW SCAN PRE-FILTER| 
DOCS_HNSW_IDX3                                         |
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|   6 |       VIEW                            | 
VW_HPJ_56DFF779                                        |
|*  7 |        HASH JOIN RIGHT OUTER          
|                                                        |
|   8 |         TABLE ACCESS FULL             | 
VECTOR$DOCS_HNSW_IDX3$81357_82726_0$HNSW_ROWID_VID_MAP |
|*  9 |         TABLE ACCESS FULL             | 
DOC_CHUNKS                                             |
------------------------------------------------------------------------------
--------------------------

Note:

• HNSW indexes use an auxiliary table and associated index to store index
information like mapping between vector ids and rowids. Mainly VECTOR$<index
name>$HNSW_ROWID_VID_MAP.

• For the join, you can also see plans like the following:

NESTED LOOPS OUTER
  TABLE ACCESS FULL  DOC_CHUNKS
  TABLE ACCESS BY INDEX ROWID 
VECTOR$DOCS_HNSW_IDX3$81357_82726_0$HNSW_ROWID_VID_MAP
    INDEX UNIQUE SCAN SYS_C008586

Pre-filter without Join-back (Start from Operation id 8)

Filtered rowids with relevant columns are first identified in the base table and buffered. The
result is then joined to the auxiliary mapping table before the HNSW vector index identifies the
top-K vectors. For those identified vectors, associated base table columns are shown.

------------------------------------------------------------------------------
-------------------------
| Id  | Operation                            | 
Name                                                   |
------------------------------------------------------------------------------
-------------------------
|   0 | SELECT STATEMENT                     
|                                                        |
|*  1 |  COUNT STOPKEY                       
|                                                        |
|   2 |   VIEW                               
|                                                        |
|*  3 |    SORT ORDER BY STOPKEY             
|                                                        |
|   4 |     VECTOR INDEX HNSW SCAN PRE-FILTER| 
DOCS_HNSW_IDX3                                         |
|   5 |      VIEW                            | 
VW_HPF_B919B0A0                                        |
|*  6 |       HASH JOIN RIGHT OUTER          
|                                                        |
|   7 |        TABLE ACCESS FULL             | 
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VECTOR$DOCS_HNSW_IDX3$81357_82726_0$HNSW_ROWID_VID_MAP |
|*  8 |        TABLE ACCESS FULL             | 
DOC_CHUNKS                                             | 
------------------------------------------------------------------------------
-------------------------

In-filter With Join-back (Start from Operation id 5)

HNSW vector index is traversed first, and for each identified vector, filters on the base table for
the corresponding rowid are applied. Once the top-K rowids passing the filters are identified,
base table columns are extracted.

----------------------------------------------------------------
| Id  | Operation                            | Name            |
----------------------------------------------------------------
|   0 | SELECT STATEMENT                     |                 |
|*  1 |  COUNT STOPKEY                       |                 |
|   2 |   VIEW                               |                 |
|*  3 |    SORT ORDER BY STOPKEY             |                 |
|*  4 |     TABLE ACCESS BY INDEX ROWID      | DOC_CHUNKS      |
|   5 |      VECTOR INDEX HNSW SCAN IN-FILTER| DOCS_HNSW_IDX3  |
|   6 |       VIEW                           | VW_HIJ_B919B0A0 |
|*  7 |        TABLE ACCESS BY USER ROWID    | DOC_CHUNKS      |
----------------------------------------------------------------

In-filter without Join-back (Start from Operation id 4)

HNSW vector index is traversed first, and for each identified vector, filters on the base table for
the corresponding rowid are applied and relevant columns extracted. Once the top-K vectors
are identified, corresponding base table columns are shown.

---------------------------------------------------------------
| Id  | Operation                           | Name            |
---------------------------------------------------------------
|   0 | SELECT STATEMENT                    |                 |
|*  1 |  COUNT STOPKEY                      |                 |
|   2 |   VIEW                              |                 |
|*  3 |    SORT ORDER BY STOPKEY            |                 |
|   4 |     VECTOR INDEX HNSW SCAN IN-FILTER| DOCS_HNSW_IDX3  |
|   5 |      VIEW                           | VW_HIF_B919B0A0 |
|*  6 |       TABLE ACCESS BY USER ROWID    | DOC_CHUNKS      |
---------------------------------------------------------------

HNSW Indexes in the Optimizer Plan

HNSW indexes plans may use an internal table and associated index to store index
information like mapping between vector ids and rowids. Mainly VECTOR$<index
name>$HNSW_ROWID_VID_MAP.
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Table 8-1    HNSW Options

Operation Options Object_name

TABLE ACCESS FULL VECTOR$<vector-index-
name>$<id>$HNSW_ROW_VID_MA
P

TABLE ACCESS STORAGE FULL VECTOR$<vector-index-
name>$<id>$HNSW_ROW_VID_MA
P

TABLE ACCESS INMEMORY FULL VECTOR$<vector-index-
name>$<id>$HNSW_ROW_VID_MA
P

For the HNSW index itself, which is an In-Memory object, the plan uses a VECTOR INDEX
operation. The object name GALAXIES_HNSW_INX is provided as an example of the user-
specified HNSW index name:

Operation Options Object_name

VECTOR INDEX HNSW SCAN GALAXIES_HNSW_INX
VECTOR INDEX HNSW SCAN PRE-FILTER GALAXIES_HNSW_INX
VECTOR INDEX HNSW SCAN IN-FILTER GALAXIES_HNSW_INX

Optimizer Plans for IVF Vector Indexes
Inverted File Flat (IVF) is a form of Neighbor Partition Vector index. It is a partition-based index
that achieves search efficiency by narrowing the search area through the use of neighbor
partitions or clusters.

When using IVF vector indexes, you can see two possible plans for your similarity searches:

• Pre-filtering evaluates the filters first, before using the IVF vector index. Once the optimizer
chooses which centroid partitions to scan, it evaluates the filters for all the rows in those
partitions. Then it computes the distance to the query vector for the rows that passed the
filters.

• Post-filtering evaluates the filters after using the IVF vector index. Once the optimizer
chooses which centroid partitions to scan, it computes the distance to the query vector for
all the rows in those partitions. Once the optimizer finds the closest rows, it then evaluates
the filter for those rows and returns only the ones that pass the filters.

Consider the following query:

SELECT chunk_id, chunk_data,
FROM doc_chunks
WHERE doc_id=1
ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 4 ROWS ONLY WITH TARGET ACCURACY 80;

The preceding query can lead to the following two different execution plans:
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Note:

Depending on the version you are using, you can find variations of these plans.
However, the idea stays the same, so the following plans are just for illustration
purposes.

Pre-filter plan

• Plan line ids 5 to 9: This part happens first. The optimizer chooses the centroid ids that are
closest to the query vector.

• Plan line ids 10 to 13: With these lines, the base table is joined to the identified centroid
partitions using a NESTED LOOPS join. The base table is scanned to look for all the rows that
pass the WHERE clause filter. For each of these rows, there is a look up in the index of the
centroid partitions (plan line id 13). The rowid from the scan of the base table is used to
find the row in the centroid partitions table that has a matching value for the base table
rowid column.

• Plan line id 4: All the rows from 5-9 are joined to the rows from 10-13 with a HASH JOIN.
That is, the rows that were filtered by 10-13 are reduced to only the rows from the
partitions that were chosen as the closest ones.

• Plan line id 3: This step computes the vector distance and sorts on this value, only keeping
the top-K rows.

------------------------------------------------------------------------------
-------------------------------------
| Id  | Operation                               | 
Name                                                            |
------------------------------------------------------------------------------
-------------------------------------
|   0 | SELECT STATEMENT                        
|                                                                 |
|*  1 |  COUNT STOPKEY                          
|                                                                 |
|   2 |   VIEW                                  
|                                                                 |
|*  3 |    SORT ORDER BY STOPKEY                
|                                                                 |
|*  4 |     HASH JOIN                           
|                                                                 |
|   5 |      VIEW                               | 
VW_IVCR_2D77159E                                                |
|*  6 |       COUNT STOPKEY                     
|                                                                 |
|   7 |        VIEW                             | 
VW_IVCN_9A1D2119                                                |
|*  8 |         SORT ORDER BY STOPKEY           
|                                                                 |
|   9 |          TABLE ACCESS FULL              | 
VECTOR$DOCS_IVF_IDX2$81357_82648_0$IVF_FLAT_CENTROIDS           |
|  10 |      NESTED LOOPS                       
|                                                                 |
|* 11 |       TABLE ACCESS FULL                 | 
DOC_CHUNKS                                                      |
|  12 |       TABLE ACCESS BY GLOBAL INDEX ROWID| 
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VECTOR$DOCS_IVF_IDX2$81357_82648_0$IVF_FLAT_CENTROID_PARTITIONS |
|* 13 |        INDEX UNIQUE SCAN                | 
SYS_C008661                                                     |
------------------------------------------------------------------------------
-------------------------------------

Note:

IVF indexes use auxiliary partition tables and associated indexes to store index
information. Mainly VECTOR$<index name>$<ids>$IVF_FLAT_CENTROIDS and
VECTOR$<index name>$<ids>$IVF_FLAT_CENTROIDS_PARTITIONS.

Post-filter Plan

• Plan line ids 11 to 15: Here the optimizer chooses the closest centroids (similar to lines 5
through 9 of the pre-filter plan).

• Plan line id 10: This creates a special filter with information about which centroid ids were
chosen.

• Plan line ids 16 and 17: These lines use the special filter from plan line 10 to scan only the
corresponding centroid partitions.

• Plan line id 9: This HASH JOIN makes sure that only the rows with the closest centroid ids
are returned.

• Plan line id 8: This computes the distance for those rows with the closest centroid ids and
finds the top-K rows.

• Plan line id 4: This NESTED LOOPS applies the base table filter to the previously identified
top-K rows.

------------------------------------------------------------------------------
---------------------------------
| Id  | Operation                           | 
Name                                                            |
------------------------------------------------------------------------------
---------------------------------
|   0 | SELECT STATEMENT                    
|                                                                 |
|*  1 |  COUNT STOPKEY                      
|                                                                 |
|   2 |   VIEW                              
|                                                                 |
|*  3 |    SORT ORDER BY STOPKEY            
|                                                                 |
|   4 |     NESTED LOOPS                    
|                                                                 |
|   5 |      VIEW                           | 
VW_IVPSR_11E7D7DE                                               |
|*  6 |       COUNT STOPKEY                 
|                                                                 |
|   7 |        VIEW                         | 
VW_IVPSJ_578B79F1                                               |
|*  8 |         SORT ORDER BY STOPKEY       
|                                                                 |
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|*  9 |          HASH JOIN                  
|                                                                 |
|  10 |           PART JOIN FILTER CREATE   
| :BF0000                                                         |
|  11 |            VIEW                     | 
VW_IVCR_B5B87E67                                                |
|* 12 |             COUNT STOPKEY           
|                                                                 |
|  13 |              VIEW                   | 
VW_IVCN_9A1D2119                                                |
|* 14 |               SORT ORDER BY STOPKEY 
|                                                                 |
|  15 |                TABLE ACCESS FULL    | 
VECTOR$DOCS_IVF_IDX4$81357_83292_0$IVF_FLAT_CENTROIDS           |
|  16 |           PARTITION LIST JOIN-
FILTER|                                                                 |
|  17 |            TABLE ACCESS FULL        | 
VECTOR$DOCS_IVF_IDX4$81357_83292_0$IVF_FLAT_CENTROID_PARTITIONS |
|* 18 |      TABLE ACCESS BY USER ROWID     | 
DOC_CHUNKS                                                      |
------------------------------------------------------------------------------
---------------------------------

IVF Indexes in the Optimizer Plan

If the IVF index is used by the optimizer, the plan contains the names of the centroids and
centroid partitions tables accessed as well as corresponding indexes.

The value displayed in the Options column for tables accessed via IVF indexes depends upon
whether the table scan is for a regular table or Exadata table.

Table 8-2    Centroids and Centroid Partition Table Options

Operation Options Object_name

TABLE ACCESS FULL VECTOR$<vector-index-
name>$<id>$IVF_FLAT_CENTRO
IDS
VECTOR$DOCS_IVF_IDX2$<id>$
IVF_FLAT_CENTROID_PARTITIO
NS

TABLE ACCESS STORAGE FULL VECTOR$<vector-index-
name>$<id>$IVF_FLAT_CENTRO
IDS
VECTOR$DOCS_IVF_IDX2$<id>$
IVF_FLAT_CENTROID_PARTITIO
NS

TABLE ACCESS INMEMORY FULL VECTOR$<vector-index-
name>$<id>$IVF_FLAT_CENTRO
IDS
VECTOR$DOCS_IVF_IDX2$<id>$
IVF_FLAT_CENTROID_PARTITIO
NS
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• Terminable Iteration for IVF Index
Use this feature if you want to ensure that the desired number of rows are returned from a
search.

Terminable Iteration for IVF Index
Use this feature if you want to ensure that the desired number of rows are returned from a
search.

When using an Inverted File Flat (IVF) index, the optimizer estimates the number of probes
(nProbe) or clusters to consider in the underlying centroid tables. For example, if the nProbe =
5, the five clusters nearest to the query vector are identified and the approximate search is
exclusively made within these clusters and the results returned are based on vector proximity
within these clusters.

Consider the following query where an IVF index is created on chunk_embedding (vector
column) within the doc_chunks table. The complete example can be found here : SQL Quick
Start Using a Vector Embedding Model Uploaded into the Database

SELECT chunk_id, chunk_data,
FROM doc_chunks
WHERE doc_id=1
ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 10 ROWS ONLY WITH TARGET ACCURACY 80;

One of the existing problems is that the optimizer can under-estimate the number of probes. In
this case, the query may return fewer rows than anticipated. In situations where the number of
rows fetched is critical to an application, using terminable iteration with IVF indexes makes it
possible to set a number (or range of rows) to be returned at a minimum. The underlying
method would extend the search to more centroids ensuring that the needed K rows are
returned. In order to use terminable iteration, you must specify the operation. If its optimizer
cost is higher with a vector index, then the optimizer chooses not to use a vector index.

The terminable IVF index can be enabled by using one of the following methods:

Using Terminable IVF Index with Hint:

The terminable IVF index could be used by specifying a IVF_ITERATION as a hint in the query.
For example, the above query could be rewritten using the hint as follows :

SELECT /*+ IVF_ITERATION*/ chunk_id, chunk_data,
FROM doc_chunks
WHERE doc_id=1
ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 10 ROWS ONLY WITH TARGET ACCURACY 80;

Using Terminable IVF Index with Syntax:

The terminable iteration could also be specified by using the new syntax which explicitly sets
the bounds for the number of rows that needs to be returned. The same example could be
rewritten with the new syntax for terminable IVF index as follows:

SELECT chunk_id, chunk_data,
FROM doc_chunks
WHERE doc_id=1

Chapter 8
Perform Approximate Similarity Search Using Vector Indexes

8-14



ORDER BY VECTOR_DISTANCE( chunk_embedding, :query_vector, COSINE )
FETCH APPROX FIRST 10 to 20 ROWS ONLY WITH TARGET ACCURACY 80;

In the above example, - 10 to 20 - enables terminable iteration. The lower bound (in this
example, 10) indicates that at least 10 rows are returned by performing terminable iteration.
The upper bound (in this example, 20) indicates that the query will return at most 20 rows.
Lower bound and upper bound can be identical, this would still enable the terminable iteration.
No rows are returned if the lower bound is larger than the upper bound or if the upper bound is
zero or negative. If there are not enough centroids available to extend the search, it is possible
that the query would return less than 10 rows.

Vector Index Hints
If the optimizer does not choose your existing index while running your query and you still want
that index to be used, you can rewrite your SQL statement to include vector index hints.

There are two types of vector index hints:

• Access path hints apply when running a simple query block with a single table with no
predicates and a valid HNSW vector index. This only applies to HNSW vector indexes.

• Query transformation hints cover all other cases, where query transformations are used.

Syntax for Access Path Hints

The access path hints are modeled on the existing INDEX hints. For example:

VECTOR_INDEX_SCAN ( [ @ queryblock ] tablespec [ indexspec ])

NO_VECTOR_INDEX_SCAN ( [ @ queryblock ] tablespec [ indexspec ])

The VECTOR_INDEX_SCAN hint instructs the optimizer to use a vector index scan for the specified
table. The index is optionally specified. The optimizer does not consider a full table scan.

NO_VECTOR_INDEX_SCAN disables the use of the optionally specified vector index scan.

See Also:

• Oracle Database SQL Language Reference for details about the INDEX hint

Access Path Hint Examples

SELECT /*+ VECTOR_INDEX_SCAN(galaxies) */ name
FROM galaxies
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 3 ROWS ONLY;

SELECT /*+ NO_VECTOR_INDEX_SCAN(galaxies) */ name
FROM galaxies
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 3 ROWS ONLY;
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Note that even though the second example query is expected not to use a vector index, it is
just a hint that the optimizer may or may not follow. To be certain that the index will not be
used, it is better to use EXACT rather than the hint, as in the following:

SELECT name
FROM galaxies
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH EXACT FIRST 3 ROWS ONLY;

Syntax for Query Transformation Hints

The syntax for query transformation hints is similar to the INDEX hints model. For example:

VECTOR_INDEX_TRANSFORM ( [ @ queryblock ] tablespec [ indexspec 
[ filtertype ]] )

NO_VECTOR_INDEX_TRANSFORM ( [ @ queryblock ] tablespec [ indexspec ] )

VECTOR_INDEX_TRANSFORM forces the transformation and uses the optionally specified index,
whereas NO_VECTOR_INDEX_TRANSFORM disables the transformation and the use of the optionally
specified index. For more information about the potential query transformations, see Optimizer
Plans for HNSW Vector Indexes and Optimizer Plans for IVF Vector Indexes.

The optional filtertype specification for the VECTOR_INDEX_TRANSFORM hint can have the
following values:

• PRE_FILTER_WITH_JOIN_BACK (only applies to HNSW indexes)

• PRE_FILTER_WITHOUT_JOIN_BACK (applies to both HNSW and IVF indexes)

• IN_FILTER_WITH_JOIN_BACK (only applies to HNSW indexes)

• IN_FILTER_WITHOUT_JOIN_BACK (only applies to HNSW indexes)

• POST_FILTER_WITHOUT_JOIN_BACK (only applies to IVF indexes)

Each filtertype value corresponds to exactly one state in the query transformation. If no
filtertype value is specified in the VECTOR_INDEX_TRANSFORM hint, then all of the valid filtering
types are considered and the best one is chosen.

Note:

If you specify the filtertype value, you must also specify the indexspec value.

See Also:

• Oracle Database SQL Language Reference for details about the INDEX hint

Query Transformation Hint Examples

SELECT /*+ vector_index_transform(galaxies galaxies_ivf_idx 
pre_filter_without_join_back) */ name
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FROM galaxies
WHERE id<5
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT /*+ vector_index_transform(galaxies) */ name
FROM galaxies
WHERE id<5
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 10 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT /*+ no_vector_index_transform(galaxies) */ name
FROM galaxies
WHERE id<5
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 10 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT /*+ vector_index_transform(galaxies galaxies_hnsw_idx 
in_filter_with_join_back) */ name
FROM galaxies
WHERE id<5
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 10 ROWS ONLY WITH TARGET ACCURACY 90;

Note:

• The auxiliary tables for vector indexes are regular heap tables and require up-to-
date optimizer statistics for accurate costing. The automatic optimizer statistics
collection task gathers statistics for the auxiliary tables only when collecting
statistics on their base tables.

• Using the DBMS_STATS package, you can perform manual statistics gathering
operations on the auxiliary tables. However, GATHER_INDEX_STATS on vector
indexes is not permitted. The in-memory HNSW index automatically maintains its
statistics in-memory.

See Also:

• Oracle Database SQL Tuning Guide for information about configuring automatic
optimizer statistics collection

The SQL examples included previously are based on the following:

DROP TABLE galaxies PURGE;
CREATE TABLE galaxies (id NUMBER, name VARCHAR2(50), doc VARCHAR2(500), 
EMBEDDING VECTOR);
-- or CREATE TABLE galaxies (id NUMBER, name VARCHAR2(50), doc VARCHAR2(500), 
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EMBEDDING VECTOR(5,INT8));
 
INSERT INTO galaxies VALUES (1, 'M31', 'Messier 31 is a barred spiral galaxy 
in the Andromeda constellation which has a lot of barred spiral galaxies.', 
'[0,2,2,0,0]');
INSERT INTO galaxies VALUES (2, 'M33', 'Messier 33 is a spiral galaxy in the 
Triangulum constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (3, 'M58', 'Messier 58 is an intermediate barred 
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
INSERT INTO galaxies VALUES (4, 'M63', 'Messier 63 is a spiral galaxy in the 
Canes Venatici constellation.', '[0,0,1,0,0]');
INSERT INTO galaxies VALUES (5, 'M77', 'Messier 77 is a barred spiral galaxy 
in the Cetus constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (6, 'M91', 'Messier 91 is a barred spiral galaxy 
in the Coma Berenices constellation.', '[0,1,1,0,0]');
INSERT INTO galaxies VALUES (7, 'M49', 'Messier 49 is a giant elliptical 
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
INSERT INTO galaxies VALUES (8, 'M60', 'Messier 60 is an elliptical galaxy in 
the Virgo constellation.', '[0,0,0,0,1]');
INSERT INTO galaxies VALUES (9, 'NGC1073', 'NGC 1073 is a barred spiral 
galaxy in Cetus constellation.', '[0,1,1,0,0]');

For HNSW indexes:

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding)
ORGANIZATION INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;

For IVF indexes:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies(embedding)
ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

Approximate Similarity Search Examples
Review these examples to see how you can perform an approximate similarity search using
vector indexes.

• Approximate Search Using HNSW
This example shows how you can create the Hierarchical Navigable Small World (HNSW)
index and run an approximate search using that index.

• Approximate Search Using IVF
This example shows how you can create the Inverted File Flat (IVF) index and run an
approximate search using that index.
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Approximate Search Using HNSW
This example shows how you can create the Hierarchical Navigable Small World (HNSW)
index and run an approximate search using that index.

create table galaxies (id number, name varchar2(50), doc varchar2(500), 
embedding vector(5,INT8));

insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy 
in the Andromeda constellation which has a lot of barred spiral galaxies.', 
'[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the 
Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred 
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the 
Canes Venatici constellation.', '[0,0,1,0,0]');
insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy 
in the Cetus constellation.', '[0,1,1,0,0]');
insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy 
in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical 
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in 
the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral 
galaxy in Cetus constellation.', '[0,1,1,0,0]');

...

commit;

In the galaxies example, this is how you can create the HNSW index and how you would run
an approximate search using that index:

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION 
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH APPROXIMATE FIRST 3 ROWS ONLY;

This approximate search example inherits a target accuracy of 95 as it is set when the index is
defined. You could override the TARGET ACCURACY of your search by running the following
query examples:

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
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ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE  )
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE  )
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY PARAMETERS (efsearch 
500);

You can also create the index using the following syntax:

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION 
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction 
500);

Note:

The APPROX and APPROXIMATE keywords are optional. If omitted while connected to an
ADB-S instance, an approximate search using a vector index is attempted if one
exists.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Approximate Search Using IVF
This example shows how you can create the Inverted File Flat (IVF) index and run an
approximate search using that index.

create table galaxies (id number, name varchar2(50), doc varchar2(500), 
embedding vector(5,INT8));

insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy 
in the Andromeda constellation which has a lot of barred spiral galaxies.', 
'[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the 
Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred 
spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the 
Canes Venatici constellation.', '[0,0,1,0,0]');
insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy 
in the Cetus constellation.', '[0,1,1,0,0]');
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insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy 
in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical 
galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in 
the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral 
galaxy in Cetus constellation.', '[0,1,1,0,0]');

...

commit;

In the galaxies example, this is how you can create the IVF index and how you can run an
approximate search using that index:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION 
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH APPROXIMATE FIRST 3 ROWS ONLY;

If the index is used by the optimizer, then this approximate search example inherits a target
accuracy of 95 as it is set when the index is defined. You can override the TARGET ACCURACY of
your search by running the following query examples:

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY 90;

SELECT name
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]') )
FETCH APPROXIMATE FIRST 3 ROWS ONLY WITH TARGET ACCURACY PARAMETERS 
( NEIGHBOR PARTITION PROBES 10 );

You can also create the index using the following syntax:

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION 
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 100);
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Note:

The APPROX and APPROXIMATE keywords are optional. If omitted while connected to an
ADB-S instance, an approximate search using a vector index is attempted if one
exists.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Perform Multi-Vector Similarity Search
Another major use-case of vector search is multi-vector search. Multi-vector search is typically
associated with a multi-document search, where documents are split into chunks that are
individually embedded into vectors.

A multi-vector search consists of retrieving top-K vector matches using grouping criteria known
as partitions based on the documents' characteristics. This ability to score documents based
on the similarity of their chunks to a query vector being searched is facilitated in SQL using the
partitioned row limiting clause.

With multi-vector search, it is easier to write SQL statements to answer the following type of
question:

• If they exist, what are the four best matching sentences found in the three best matching
paragraphs of the two best matching books?

For example, imagine if each book in your database is organized into paragraphs containing
sentences which have vector embedding representations, then you can answer the previous
question using a single SQL statement such as:

SELECT bookId, paragraphId, sentence
FROM books
ORDER BY vector_distance(sentence_embedding, :sentence_query_vector)
FETCH FIRST 2 PARTITIONS BY bookId, 3 PARTITIONS BY paragraphId, 4 ROWS ONLY;

You can also use an approximate similarity search instead of an exact similarity search as
shown in the following example:

SELECT bookId, paragraphId, sentence
FROM books
ORDER BY vector_distance(sentence_embedding, :sentence_query_vector)
FETCH APPROXIMATE FIRST 2 PARTITIONS BY bookId, 3 PARTITIONS BY paragraphId, 
4 ROWS ONLY
WITH TARGET ACCURACY 90;
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Note:

All the rows returned are ordered by VECTOR_DISTANCE() and not grouped by the
partition clause.

Semantically, the previous SQL statement is interpreted as:

• Sort all records in the books table in descending order of the vector distance between the
sentences and the query vector.

• For each record in this order, check its bookId and paragraphId. This record is produced if
the following three conditions are met:

1. Its bookId is one of the first two distinct bookId in the sorted order.

2. Its paragraphId is one of the first three distinct paragraphId in the sorted order within
the same bookId.

3. Its record is one of the first four records within the same bookId and paragraphId
combination.

• Otherwise, this record is filtered out.

Multi-vector similarity search is not just for documents and can be used to answer the following
questions too:

• Return the top K closest matching photos but ensure that they are photos of different
people.

• Find the top K songs with two or more audio segments that best match this sound snippet.

Note:

• This partition row-limiting clause extension is a generic extension of the SQL
language.  It does not have to apply just to vector searches.

• Multi-vector search with the partitioning row-limit clause does not use vector
indexes.

See Also:

Oracle Database SQL Language Reference for the full syntax of the
ROW_LIMITING_CLAUSE

Perform Hybrid Search
Hybrid search is an advanced information retrieval technique that lets you search documents
by keywords and vectors, to achieve more relevant search results.
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• Understand Hybrid Search
With hybrid search, you can search through your documents by performing a combination
of full-text queries and vector-based similarity queries, using out-of-the-box or custom
scoring techniques.

• Query Hybrid Vector Indexes End-to-End Example
In this example, you can see an end-to-end hybrid search workflow. First, you run the
CREATE HYBRID VECTOR INDEX SQL statement that prepares, chunks, embeds, stores, and
indexes your input data. You then perform vector search alongside keyword search using
the DBMS_HYBRID_VECTOR.SEARCH PL/SQL query API.

Understand Hybrid Search
With hybrid search, you can search through your documents by performing a combination of
full-text queries and vector-based similarity queries, using out-of-the-box or custom scoring
techniques.

Here are the key points to note when using hybrid search:

• Hybrid searches are run against hybrid vector indexes (as explained in Manage Hybrid
Vector Indexes). You use the DBMS_HYBRID_VECTOR.SEARCH PL/SQL function to query a
hybrid vector index.

• After you create a hybrid vector index, you have five possibilities to use the index by
querying it in multiple search modes summarized here:

– Pure Semantic in Document Mode

– Pure Semantic in Chunk Mode

– Pure Keyword in Document Mode

– Keyword and Semantic in Document Mode

– Keyword and Semantic in Chunk Mode

• When performing hybrid search by both keywords and vectors, the results are combined
(or fused) into a single result set. The results of such a hybrid search are based on a
scoring mechanism that is important to understand to be able to interpret the results.

Similarity search uses the notion of VECTOR_DISTANCE values to decide on the ranking of
chunks, whereas the traditional Oracle Text search uses the notion of keyword score also
known as CONTAINS score. These two metrics are very different and one cannot be used
directly to compare to the other. Hence, similarity search distances are converted or
normalized into a CONTAINS-score equivalent that is called semantic score so its value will
range between 100 (best) to 0 (worse). That way, keyword score and semantic score are
comparable when running a hybrid search.

For the sake of the following explanations, we are using the same use case as seen in 
Understand Hybrid Vector Indexes:
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Pure Semantic in Document Mode

The pure semantic in document mode performs vector-only search to fetch document-level
results.

The following SQL statement queries a hybrid vector index in this mode:

select json_Serialize(
  DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "galaxies formation and massive black holes",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "AVG"
          },
         "return":
          {
             "values"        : [ "rowid", "score", "vector_score" ],
             "topN"          : 10
          }
      }'
    )
  ) RETURNING CLOB pretty);

The result of this query may look like the following, where you see the ROWIDs of the DOCS table
rows corresponding to documents as well as its vector score (vector_score). Here, the final
score (score) is the same as the vector score because there is no keyword score in this case.
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Here is an excerpt from the results:

[
{
    "rowid"        : "AAASBEAAEAAAUpqAAB",
    "score"        : 71.04,
    "vector_score" : 71.04
  },
  {
    "rowid"        : "AAASBEAAEAAAWBKAAE",
    "score"        : 67.82,
    "vector_score" : 67.82
  },
]

Here is how to interpret this statement:

1. The system runs a similarity search on all the vectors and extracts the top k ones at most.
The value k is internally calculated. Each is given a vector score.

2. These k vectors (at most) are then grouped by document IDs and for each identified
document, the semantic score of each associated vector found for that document is used
to compute the average (in this example) of these scores for that particular document.

3. The top 10 documents (at most) with the highest averages are returned.

This is illustrated here:

Pure Semantic in Chunk Mode

The pure semantic in chunk mode is the SQL semantic search equivalent. This mode performs
a vector-only search to fetch chunk results.
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The following SQL statement queries a hybrid vector index in this mode:

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "galaxies formation and massive black holes",
             "search_mode"   : "CHUNK"
          },
         "return":
          {
             "values"        : [ "score", "chunk_text", "chunk_id" ],
             "topN"          : 3
          }
      }'
    )
  ) RETURNING CLOB pretty);

Here is how to interpret this statement:

1. The system runs a similarity search on all the vectors and extracts the top k ones at most.
The value k is internally calculated. Each is given a vector score.

2. The top 3 chunks (at most) with the highest scores are returned.

The result of this query may look like the following, where you can see the chunks
corresponding to their semantic scores:

[
  {
    "score"      : 61,
    "chunk_text" : "Galaxies form through a complex process that begins with 
small fluctuations in the density of matter in the early
universe. Massive black holes, typically found at the centers of galaxies, 
are believed to play a crucial role in their formation and evolution.",
    "chunk_id"   : "1"
  },
  {
    "score"      : 56.64,
    "chunk_text" : "The presence of massive black holes in galaxies is 
closely linked to their morphological characteristics and star formation 
rates.
Observations suggest that as galaxies evolve, their central black holes grow 
in tandem with their host galaxy's mass.",
    "chunk_id"   : "3"
  },
  {
    "score"      : 55.75,
    "chunk_text" : "Black holes grow by accreting gas and merging with other 
black holes. Their gravitational influence can regulate star
formation and drive powerful jets of energy, which can impact the surrounding 
galaxy.",
    "chunk_id"   : "2"
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  }
]

Pure Keyword in Document Mode

The pure keyword search in document mode is equivalent to the traditional CONTAINS query
using Oracle Text. This mode performs a text-only search to fetch document-level results.

The following SQL statement queries a hybrid vector index in this mode:

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "text":
          {
             "contains"      : "galaxies, black holes"
          },
         "return":
          {
             "values"        : [ "rowid", "score" ],
             "topN"          : 3
          }
      }'
    )
  ) RETURNING CLOB pretty);

Here is how to interpret this statement:

1. The system runs a CONTAINS query that returns a maximum number of documents. This
maximum number is internally calculated. Each document is given a keyword score.

2. The top 3 documents (at most) with the highest scores are returned.

The result of this query may look like the following, where you can see the ROWIDs of the DOCS
table rows corresponding to documents as well as their keyword scores:

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 68
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAA",
    "score" : 35
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 2
  }
]

Keyword and Semantic in Document Mode

Let us examine a non-pure case of hybrid search where keyword scores and semantic scores
are combined.
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The following SQL statement performs a keyword and semantic search to fetch document-level
results:

select json_Serialize(
  DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{
         "hybrid_index_name" : "my_hybrid_idx",
         "search_scorer"     : "rsf",
         "search_fusion"     : "UNION",
         "vector":
          {
             "search_text"   : "How can I search with hybrid vector indexes?",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 1,
             "rank_penalty"  : 5
          },
         "text":
          {
             "contains"      : "hybrid AND vector AND index"
             "score_weight"  : 10,
             "rank_penalty"  : 1
          },
         "return":
          {
             "values"        : [ "rowid", "score", "vector_score", 
"text_score" ],
             "topN"          : 10
          }
      }'
    )
  ) RETURNING CLOB pretty);

Here is how to interpret this statement:

In document mode, the result of your search is a list of ROWIDs from your base table
corresponding to the list of best files identified.

To get to this list, two searches are conducted:

• Keyword search: During this search, the system uses the CONTAINS string representing
the Oracle Text CONTAINS search expression for the searched keywords. The result of this
operation is a list of document identifiers satisfying your CONTAINS expression. The
numbers of document identifiers to retrieve, at max, is internally calculated.

• Similarity search: During this search, the system performs a similarity search with the
query vector (created from the SEARCH_TEXT string) against the vector index of all the
chunks of all your documents. The maximum number of chunks to retrieve is also internally
calculated. It then assigns a vector score to each chunk retrieved. Because you want to
run this search in DOCUMENT SEARCH_MODE, the result of this similarity search is first grouped
by document identifier. The process now aggregates the vector scores for each document,
identified using the AGGREGATOR function. The result of this similarity search is a list of
document identifiers satisfying your SEARCH_TEXT similarity query string.

After the searches complete, the system needs to merge the results and score them as
illustrated here:
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Figure 8-2    Scoring for Keyword and Semantic Search in Document Mode

As outlined in the preceding diagram,

• First, both search results are added using a UNION ALL operation.

• Before final scoring, you have the possibility to define what you want to retain from this
intermediate result set by specifying the SEARCH_FUSION operation.

• Then comes the time where final scoring is computed using the defined SEARCH_SCORER
algorithm such as Reciprocal Rank Fusion (RRF) or Relative Score Fusion (RSF). The
final scoring can use the specified SCORE_WEIGHT and RANK_PENALTY values for each
retrieved document identifier, depending from which sort operation they are coming from.

• Finally, the defined topN document identifiers are returned at most.

The possible fuse operators are illustrated here:
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Figure 8-3    Fusion Operation in Document Search Mode

Keyword and Semantic in Chunk Mode

Let us examine another non-pure case of hybrid search where keyword scores and semantic
scores are combined to fetch chunk results.

The following SQL statement performs a keyword and semantic search in chunk mode:

select json_Serialize(
  DBMS_HYBRID_VECTOR.SEARCH(
    json(
         '{
            "hybrid_index_name" : "my_hybrid_vector_idx",
            "search_scorer"     : "rsf",
            "search_fusion"     : "UNION",
            "vector":
                      {
                        "search_text"   : "How can I search with hybrid 
vector indexes?",
                        "search_mode"   : "CHUNK",
                        "score_weight"  : 1
                      },
            "text":
                      {
                       "contains"       : "hybrid AND vector AND index",
                       "score_weight"   : 1
                      },
            "return":
                      {
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                        "values"        : [ "chunk_id", "score", 
"vector_score", "text_score" ],
                        "topN"          : 10
                      }
          }'
    )
  ) RETURNING CLOB pretty);

Here is how to interpret this statement:

In chunk mode, the result of your search is a list of best chunk identifiers from the files stored
using your base table.

To get to this list, two searches are conducted:

• Keyword search: During this search, the system uses the CONTAINS string representing
the Oracle Text CONTAINS search expression for the searched keywords. The result of this
operation is a list of document identifiers satisfying your CONTAINS expression. The
numbers of document identifiers to retrieve, at max, is internally calculated.

• Similarity search: During this search, the system performs a similarity search with the
query vector (created from the SEARCH_TEXT string) against the vector index of all the
chunks of all your documents. The maximum number of chunks to retrieve is also internally
calculated. It then assigns a vector score to each chunk retrieved. Because you want to do
this search in CHUNK SEARCH_MODE, the result of this similarity search is ordered by chunk
vector scores. The result of this similarity search is a list of chunk identifiers and
associated document identifiers satisfying your SEARCH_TEXT similarity query string.

After the searches complete, the system needs to merge the results and score them as
illustrated here:
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Figure 8-4    Scoring for Keyword and Semantic Search in Chunk Mode

As outlined in the preceding diagram,

• First, both search results are submitted to a RIGHT OUTER JOIN operation on the document
identifiers.

• Before final scoring, you have the possibility to define what you want to retain from this
intermediate result set by specifying the SEARCH_FUSION operation.

• Then comes the time where final scoring is computed using the defined SEARCH_SCORER
algorithm such as Reciprocal Rank Fusion (RRF) or Relative Score Fusion (RSF). The
final scoring can use the specified SCORE_WEIGHT and RANK_PENALTY values for each
retrieved document identifier, depending from which sort operation they are coming from.

• Finally, the defined topN chunk identifiers are returned at most.

The possible fuse operators are illustrated here:
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Figure 8-5    Fusion Operation in Chunk Search Mode

MINUS_VECTOR, UNION, and TEXT_ONLY are ignored. MINUS_VECTOR would eliminate all results.
TEXT_ONLY and UNION are not possible because the right outer join excludes the non-
overlapping text results.

Related Topics

• Understand Hybrid Vector Indexes
A hybrid vector index inherits all the information retrieval capabilities of Oracle Text search
indexes and leverages the semantic search capabilities of Oracle AI Vector Search vector
indexes.

• SEARCH
Use the DBMS_HYBRID_VECTOR.SEARCH PL/SQL function to run textual queries, vector
similarity queries, or hybrid queries against hybrid vector indexes.

Query Hybrid Vector Indexes End-to-End Example
In this example, you can see an end-to-end hybrid search workflow. First, you run the CREATE
HYBRID VECTOR INDEX SQL statement that prepares, chunks, embeds, stores, and indexes
your input data. You then perform vector search alongside keyword search using the
DBMS_HYBRID_VECTOR.SEARCH PL/SQL query API.

Here, you can see how to use hybrid search in an HR Recruitment scenario, where you want
to hire employees with specific technical skills (keyword search for "C, Python, and Database")
but who also display certain personality and leadership traits (semantic search for "prioritize
teamwork and leadership experience"). You can also see how to perform different kinds of pure
and non-pure hybrid search queries in multiple search modes.

1. Connect to Oracle Database as a local user.
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a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Create a local directory on your server (DEMO_DIR) to store your input data and model
files. Grant necessary privileges:

create or replace directory DEMO_DIR as '/my_local_dir/';

grant read, write on directory DEMO_DIR to docuser;

commit;

d. Connect as the local user (docuser):

CONN docuser/password

2. Load an ONNX format embedding model into Oracle Database by calling the
load_onnx_model procedure.
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This embedding model is internally used to generate vector embeddings from your input
data.

EXECUTE dbms_vector.drop_onnx_model(model_name => 'doc_model', force => 
true);

EXECUTE dbms_vector.load_onnx_model(
  'DEMO_DIR', 'my_embedding_model.onnx', 'doc_model', 
   JSON('{"function" : "embedding", "embeddingOutput" : "embedding" , 
"input": {"input": ["DATA"]}}'));

In this example, the procedure loads an ONNX model file, named
my_embedding_model.onnx from the DEMO_DIR directory, into the database as doc_model.
You must replace my_embedding_model.onnx with an ONNX export of your embedding
model and doc_model with the name under which the imported model is stored in the
database.

Note:

If you do not have an embedding model in ONNX format, then perform the steps
listed in ONNX Pipeline Models : Text Embedding.

3. Create a relational table (for example, doc_tab) and insert all your documents in a textual
column (for example, text).

DROP TABLE doc_tab purge;

CREATE TABLE doc_tab (id number, text varchar2(500));

insert into t1 values(1, 'Candidate-1: C Master. Optimizes low-level 
system (i.e. Database) performance with C. Strong leadership skills in 
guiding teams to deliver complex projects.');
insert into t1 values(2, 'Candidate-2: Full-Stack Developer. Skilled in 
Database, C, HTML, JavaScript, and Python with experience in building 
responsive web applications. Thrives in collaborative team environments.');
insert into t1 values(3, 'Candidate-3: DevOps Engineer. Manages CI/CD 
pipelines (Jenkins, Gitlab) with expertise in cloud infrastructure (OCI, 
AWS, GCP). Proven track record of streamlining deployments and ensuring 
high availability.');
insert into t1 values(4, 'Candidate-4: Database Administrator (DBA). 
Maintains and secures enterprise database (Oracle, MySql, SQL Server). 
Passionate about data integrity and optimization. Strong mentor for junior 
DBA(s).');
insert into t1 values(5, 'Candidate-5: C, Java, Python, and Database (DBA) 
Guru. Develops scalable applications. Strong leadership, teamwork and 
collaborative.');

commit;
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4. Create a hybrid vector index (my_hybrid_idx) on the text column of the doc_tab table.

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
  doc_tab(text)
  parameters('model doc_model');

Here, model specifies the embedding model in ONNX format that you have imported into
the database for generating embeddings. This is the only required indexing parameter to
create a hybrid vector index.

An index named my_hybrid_idx is created on the text column of the doc_tab table. The
default vector index type is set to Inverted File Flat (IVF).

5. Query the hybrid vector index.

In the next steps, we will explore all possible ways in which you can query the hybrid
vector index using multiple search modes described in Understand Hybrid Search. You can
then compare the results to examine the differences in scores and ranking for a
comprehensive understanding.

a. Simple default query:

By default, hybrid search offers a simplified query with predefined fields. The minimum
input parameters required are hybrid_index_name and search_text.

The same search text (C, Python, Database) is used to query the vectorized chunk
index and the text document index. This search text is transformed into a CONTAINS
query for keyword search, and is vectorized for a VECTOR_DISTANCE query for semantic
search.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
         '{ 
           "hybrid_index_name" : "my_hybrid_idx",
           "search_text"       : "C, Python, Database"
          }'
        )
  ) pretty)
from dual;

This query returns the top 3 rows, ordered by score relevance. The highest final score
(69.54) of Candidate-2 indicates the best match. All the return attributes are shown by
default in this query.

[
  {
    "rowid"        : "AAAR9jAABAAAQeaAAB",
    "score"        : 69.54,
    "vector_score" : 69.69,
    "text_score"   : 68,
    "vector_rank"  : 1,
    "text_rank"    : 1,
    "chunk_text"   : "Candidate-2: Full-Stack Developer. Skilled in 
Database, C, HTM
L, JavaScript, and Python with experience in building responsive web 
application
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s. Thrives in collaborative team environments.",
    "chunk_id"     : "1"
  },
  {
    "rowid"        : "AAAR9jAABAAAQeaAAA",
    "score"        : 62.77,
    "vector_score" : 65.55,
    "text_score"   : 35,
    "vector_rank"  : 4,
    "text_rank"    : 2,
    "chunk_text"   : "Candidate-1: C Master. Optimizes low-level system 
(i.e. Da
tabase) performance with C. Strong leadership skills in guiding teams 
to deliver
 complex projects.",
    "chunk_id"     : "1"
  },
  {
    "rowid"        : "AAAR9jAABAAAQeaAAD",
    "score" : 62.15,
    "vector_score" : 68.17,
    "text_score"   : 2,
    "vector_rank"  : 2,
    "text_rank"    : 3,
    "chunk_text"   : "Candidate-4: Database Administrator (DBA). 
Maintains and
secures enterprise database (Oracle, MySql, SQL Server). Passionate 
about data i
ntegrity and optimization. Strong mentor for junior DBA(s).",
    "chunk_id"     : "1"
  }
]

b. Pure semantic in document mode (text as query input):

This is a pure vector-based similarity query to fetch document-level search results.
Here, the search_text string is vectorized into a query vector for a VECTOR_DISTANCE
semantic query.

A vector search operates at the chunk level, where the query first extracts the top
candidates of vectorized chunks, aggregates them by document using the aggregator
(MAX) function, produces a combined score (according to the aggregator), and finally
returns the top n documents. To know more about how this works, see Pure Semantic
in Document Mode.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
            {
             "search_text"   : "prioritize teamwork and leadership 
experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX"
            },
         "return":
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            {
             "values"        : [ "rowid", "score" ],
             "topN": 3
            }
      }'
    )
  ) pretty)
from dual;

The top 3 documents are returned with the corresponding ROWIDs of the doc_tab table
rows as well as their vector scores.

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAA",
    "score" : 61
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 56.64
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 55.75
  }
]

c. Pure semantic in document mode (embedding as query input):

As compared to the previous pure semantic query in document mode (where you used
the search_text parameter to specify the query text for vector search), here you use
the search_vector parameter to directly pass a vector embedding (query vector) as
input for your vector search.

In the same manner, this query retrieves the top vectorized chunk results, aggregates
them by document using the aggregator (MAX) function, and finally returns the top n
documents.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
           "search_vector"   : vector_serialize(
                                            vector_embedding(doc_model
                                                        using
                                                        "C, Python, 
Database"
                                                        as data)
                                                    RETURNING CLOB), 
           "search_mode"     : "DOCUMENT",
           "aggregator"      : "MAX"
          },
         "return":
          {
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           "values"     : [ "rowid", "score" ],
           "topN": 3
          }
      }'
    )
  ) pretty)
from dual;

The top 3 documents are returned with the corresponding ROWIDs of the doc_tab table
rows as well as their vector scores.

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 69.69
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 68.17
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAC",
    "score" : 67.48
  }
]

d. Pure semantic in chunk mode:

This is a pure vector-based similarity query to retrieve chunk results. Note that this is
the Oracle AI Vector Search semantic search equivalent. Here, vector search retrieves
the best vectorized chunks from the same or different set of documents and then
internally computes their vector scores. The top n chunks with the highest vector
scores are returned. To know more about how this works, see Pure Semantic in Chunk
Mode.

As compared to the previous pure semantic search in document mode, aggregation of
chunk results is not performed in chunk mode, so the aggregator function is not
needed.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "prioritize teamwork and leadership 
experience",
             "search_mode"   : "CHUNK"
          },
         "return":
          {
             "values"        : [ "rowid", "score", "chunk_text", 
"chunk_id" ],
             "topN"          : 3
          }
      }'
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    )
  ) pretty)
from dual;

The top 3 chunks with the highest scores are returned along with chunk IDs and chunk
texts. You can also see the corresponding ROWIDs of the doc_tab table rows. The
highest score (61) of Candidate-1 with chunk ID 1 indicates the top match:

[
  {
    "rowid"      : "AAAR9jAABAAAQeaAAA",
    "score"      : 61,
    "chunk_text" : "Candidate-1: C Master. Optimizes low-level system 
(i.e. Da
tabase) performance with C. Strong leadership skills in guiding teams 
to deliver
 complex projects.",
    "chunk_id"   : "1"
  },
  {
    "rowid"      : "AAAR9jAABAAAQeaAAD",
    "score"      : 56.64,
    "chunk_text" : "Candidate-4: Database Administrator (DBA). 
Maintains and
secures enterprise database (Oracle, MySql, SQL Server). Passionate 
about data i
ntegrity and optimization. Strong mentor for junior DBA(s).",
    "chunk_id"   : "1"
  },
  {
    "rowid"      : "AAAR9jAABAAAQeaAAB",
    "score"      : 55.75,
    "chunk_text" : "Candidate-2: Full-Stack Developer. Skilled in 
Database, C, HTM
L, JavaScript, and Python with experience in building responsive web 
application
s. Thrives in collaborative team environments.",
    "chunk_id"   : "1"
  }
]

e. Pure keyword in document mode:

This is a pure text-based keyword query to fetch document-level results. Note that this
is equivalent to the traditional CONTAINS query using Oracle Text. Here, full-text search
retrieves the best documents and then internally computes their keyword scores. The
top n documents with the highest keyword scores are returned. To know more about
how this works, see Pure Keyword in Document Mode.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "text":
          {
           "contains"        : "C, Python, Database"
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          },
         "return":
          {
           "values"          : [ "rowid", "score" ],
           "topN": 3
          }
      }'
    )
  ) pretty)
from dual;

The top 3 documents with the highest scores are returned, where you can see the
corresponding ROWIDs of the doc_tab table as well as their keyword scores:

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 68
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAA",
    "score" : 35
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 2
  }
]

f. Keyword and semantic in document mode (common query string):

This is a hybrid query that conducts both keyword search and vector search on the
data, and then combines the keyword scores and semantic scores to fetch document-
level results.

Here, the same text string (C, Python, Database) is used for both:

• a keyword query on the document text index by converting the SEARCH_TEXT string
into a CONTAINS ACCUM operator syntax

• and a semantic query on the vectorized chunk index by vectorizing the
SEARCH_TEXT string for a VECTOR_DISTANCE query

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_text"       : "C, Python, Database",
         "search_fusion"     : "INTERSECT",
         "search_scorer"     : "rsf",
         "vector":
            {
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX"
            },
         "return":
            {
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             "values"        : [ "rowid", "score" ],
             "topN"          : 3
            }
      }'
    )
  ) pretty)
from dual;

For vector search, this query searches the query vector (created from the SEARCH_TEXT
string) against the vector index. A vector search operates at the chunk level, where the
query first extracts the top candidates of vectorized chunks, aggregates them by
document using the aggregator (MAX) function, produces a combined vector score
(according to the aggregator), and finally returns the top n documents.

For scoring, first both search results are added using a UNION ALL operation. Then the
results are fused using the SEARCH_FUSION operator, INTERSECT that combines all
distinct rows selected by both the searches. The final scoring is computed using the
defined SEARCH_SCORER algorithm, RSF. Finally, the defined topN doc IDs are returned
at most.

To know more about how the scores are calculated, see Keyword and Semantic in
Document Mode.

The top 3 documents with the highest scores are returned, where you can see a list of
ROWIDs from your base table (doc_tab) corresponding to the list of best files identified.

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 69.54
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAA",
    "score" : 62.77
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 62.15
  }
]

g. Keyword and semantic in document mode (separate query strings):

As compared to the previous keyword and semantic search in document mode (where
you used the same search_text string for both text search and vector search), here
you specify two separate search texts for both the search types.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_fusion"     : "INTERSECT",
         "search_scorer"     : "rsf",
         "vector":
          {
             "search_text"   : "prioritize teamwork and leadership 
experience",
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             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX"
          },
         "text":
          {
             "contains"      : "C, Python, Database"
          },
         "return":
          {
             "values"        : [ "rowid", "score" ],
             "topN"          : 3
          }
      }'
    )
  ) pretty)
from dual;

In the same manner, the keyword search retrieves a list of doc IDs satisfying your
CONTAINS text query string (C, Python, Database). The vector search retrieves a list of
doc IDs satisfying your SEARCH_TEXT similarity query string (prioritize teamwork and
leadership experience).

For scoring, first both search results are added using a UNION ALL operation. Then the
results are fused using the SEARCH_FUSION operator, INTERSECT. The final scoring is
computed using the defined SEARCH_SCORER algorithm, RSF. Finally, the defined topN
doc IDs are returned at most.

To know more about how the scores are calculated, see Keyword and Semantic in
Document Mode.

The top 3 documents with the highest scores are returned, where you can see a list of
ROWIDs from your base table (doc_tab) corresponding to the list of best files identified.

[
  {
    "rowid" : "AAAR9jAABAAAQeaAAA",
    "score" : 58.64
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAB",
    "score" : 56.86
  },
  {
    "rowid" : "AAAR9jAABAAAQeaAAD",
    "score" : 51.67
  }
]

h. Keyword and semantic in chunk mode:

This is a hybrid query that conducts both keyword search and vector search on the
data, and then combines the keyword scores and semantic scores to fetch chunk-level
results.

select json_Serialize(
  dbms_hybrid_vector.search(
    json(
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      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "prioritize teamwork and leadership 
experience",
             "search_mode"   : "CHUNK"
          },
         "text":
          {
             "contains"      : "C, Python, Database"
          },
         "return":
          {
             "values"        : [ "rowid", "score", "chunk_text", 
"chunk_id" ],
             "topN": 3
          }
      }'
    )
  ) pretty)
from dual;

The keyword search retrieves a list of doc IDs satisfying your CONTAINS text query
string (C, Python, Database).

The vector search performs a similarity query with the query vector (created from the
SEARCH_TEXT string: prioritize teamwork and leadership experience) against the
vector index of all the chunks of all your documents. It retrieves a list of chunk IDs and
associated doc IDs satisfying your SEARCH_TEXT similarity query string.

Aggregation of chunk results is not performed in chunk mode, so the AGGREGATOR
function is not applicable.

For scoring, first the text document results are added into the chunk results using the
RIGHT OUTER JOIN operation on doc IDs. Any text document results that are not in the
vector candidate chunks are not returned. Then the results are fused using the
SEARCH_FUSION operator, INTERSECT that combines all distinct rows selected by both
the searches. The final scoring is computed using the defined SEARCH_SCORER
algorithm, RSF. Finally, the defined topN chunk IDs are returned at most.

To know how the scores are calculated, see Keyword and Semantic in Chunk Mode.

A list of top 3 chunk IDs are returned from the files stored in your base table (doc_tab),
along with chunk texts and the corresponding ROWIDs. The highest final score (58.64)
of Candidate-1 with chunk ID 1 indicates the top match:

[
  {
    "rowid"      : "AAAR9jAABAAAQeaAAA",
    "score"      : 58.64,
    "chunk_text" : "Candidate-1: C Master. Optimizes low-level system 
(i.e. Da
tabase) performance with C. Strong leadership skills in guiding teams 
to deliver
 complex projects.",
    "chunk_id"   : "1"
  },

Chapter 8
Perform Hybrid Search

8-45



  {
    "rowid"      : "AAAR9jAABAAAQeaAAB",
    "score"      : 56.86,
    "chunk_text" : "Candidate-2: Full-Stack Developer. Skilled in 
Database, C, HTM
L, JavaScript, and Python with experience in building responsive web 
application
s. Thrives in collaborative team environments.",
    "chunk_id"   : "1"
  },
  {
    "rowid"      : "AAAR9jAABAAAQeaAAD",
    "score"      : 51.67,
    "chunk_text" : "Candidate-4: Database Administrator (DBA). 
Maintains and
secures enterprise database (Oracle, MySql, SQL Server). Passionate 
about data i
ntegrity and optimization. Strong mentor for junior DBA(s).",
    "chunk_id"   : "1"
  }
]

Related Topics

• Manage Hybrid Vector Indexes
Learn how to manage a hybrid vector index, which is a single index for searching by
similarity and keywords, to enhance the accuracy of your search results.

• SEARCH
Use the DBMS_HYBRID_VECTOR.SEARCH PL/SQL function to run textual queries, vector
similarity queries, or hybrid queries against hybrid vector indexes.
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9
Work with LLM-Powered APIs and Retrieval
Augmented Generation

You can use Vector Utility PL/SQL APIs for prompting Large Language Models (LLMs) with
textual prompts and images, using LLM-powered interfaces. You can also communicate with
LLMs through the implementation of Retrieval Augmented Generation (RAG), which helps to
generate more accurate and informative responses.

• Use LLM-Powered APIs to Generate Summary and Text
Run these end-to-end examples to see how you can summarize or describe textual inputs
and images.

• Use Retrieval Augmented Generation to Complement LLMs
RAG lets you mitigate the inaccuracies and hallucinations faced when using LLMs. Oracle
AI Vector Search enables RAG within Oracle Database using the DBMS_VECTOR_CHAIN
PL/SQL package or through popular frameworks (such as LangChain).

• Supported Third-Party Provider Operations and Endpoints
Review a list of third-party REST providers and REST endpoints that are supported for
various vector generation, summarization, text generation, and reranking operations.

Use LLM-Powered APIs to Generate Summary and Text
Run these end-to-end examples to see how you can summarize or describe textual inputs and
images.

• Generate Summary
In these examples, you can see how to summarize a given textual extract.

• Generate Text Response
In these examples, you can see how to generate a textual answer, description, or summary
based on the specified task in a given prompt.

• Describe Image Content
In these examples, you can see how to generate a textual analysis or description of the
contents of a given image.

Generate Summary
In these examples, you can see how to summarize a given textual extract.

A summary is a short and concise extract with key features of a document that best represents
what the document is about as a whole. A summary can be free-form paragraphs or bullet
points based on the format that you specify.
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Note:

You can also generate a summary using Oracle Database as the service provider. In
this case, Oracle Text is internally used to generate a summary. However, that is
outside the scope of these examples. See UTL_TO_SUMMARY.

• Generate Summary Using Public REST Providers
Perform a text-to-summary transformation, using publicly hosted third-party text
summarization models by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or
Vertex AI.

• Generate Summary Using the Local REST Provider Ollama
Perform a text-to-summary transformation by accessing open LLMs, using the local host
REST endpoint provider Ollama.

Generate Summary Using Public REST Providers
Perform a text-to-summary transformation, using publicly hosted third-party text summarization
models by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI.

Here, you call the chainable utility function UTL_TO_SUMMARY.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To summarize a textual extract, using an external LLM:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
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SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Set proxy if one exists.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

4. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_SUMMARY.

• Using Generative AI:

Note:

Currently, UTL_TO_SUMMARY does not work for Generative AI because the
model and summary endpoint supported for Generative AI have been retired.
It will be available in a subsequent release.

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store an OCI
credential (OCI_CRED).
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Generative AI requires the following authentication parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
"fingerprint"     : "<fingerprint>" 
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_SUMMARY call.

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector_chain.drop_credential('OCI_CRED');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('user_ocid','<user ocid>');
  jo.put('tenancy_ocid','<tenancy ocid>');
  jo.put('compartment_ocid','<compartment ocid>');
  jo.put('private_key','<private key>');
  jo.put('fingerprint','<fingerprint>');
  dbms_vector_chain.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

Replace all the authentication parameter values.

For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
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jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');
  
jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');
  
jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
  jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');
  
jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');
  dbms_vector_chain.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

b. Run DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY:

Here, the cohere.command-r-16k model is used. You can replace the model value,
as required.

Note:

For a list of all REST endpoint URLs and models that are supported to
use with Generative AI, see Supported Third-Party Provider Operations
and Endpoints.

-- select example

var params clob;
exec :params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k"
}';

select dbms_vector_chain.utl_to_summary(
  'A transaction is a logical, atomic unit of work that contains 
one or more SQL
    statements.
    An RDBMS must be able to group SQL statements so that they are 
either all
    committed, which means they are applied to the database, or all 
rolled back, which
    means they are undone.
    An illustration of the need for transactions is a funds 
transfer from a savings account to
    a checking account. The transfer consists of the following 
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separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or 
fail as a unit. For
    example, if a hardware failure prevents a statement in the 
transaction from executing,
    then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If 
you
    perform an atomic operation that updates several files, and if 
the system fails halfway
    through, then the files will not be consistent. In contrast, a 
transaction moves an
    Oracle database from one consistent state to another. The basic 
principle of a
    transaction is all or nothing: an atomic operation succeeds or 
fails as a whole.',
  json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'A transaction is a logical, atomic unit of work that 
contains one or more SQL
    statements.
    An RDBMS must be able to group SQL statements so that they are 
either all
    committed, which means they are applied to the database, or all 
rolled back, which
    means they are undone.
    An illustration of the need for transactions is a funds 
transfer from a savings account to
    a checking account. The transfer consists of the following 
separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or 
fail as a unit. For
    example, if a hardware failure prevents a statement in the 
transaction from executing,
    then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If 
you
    perform an atomic operation that updates several files, and if 
the system fails halfway
    through, then the files will not be consistent. In contrast, a 
transaction moves an
    Oracle database from one consistent state to another. The basic 
principle of a
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    transaction is all or nothing: an atomic operation succeeds or 
fails as a whole.';

  params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k"
}';

  output := dbms_vector_chain.utl_to_summary(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Optionally, you can specify additional REST provider-specific parameters. For
example:

{  
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "length"         : "MEDIUM",
  "format"         : "PARAGRAPH",
  "temperature"    : 1.0
}

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_SUMMARY call.

exec dbms_vector_chain.drop_credential('<credential name>');

declare
  jo json_object_t;
begin
  jo := json_object_t();
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  jo.put('access_token', '<access token>');
  dbms_vector_chain.create_credential(
    credential_name   => '<credential name>',
    params            => json(jo.to_string));
end;
/

Replace the access_token and credential_name values. For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
  dbms_vector_chain.create_credential(
    credential_name   => 'HF_CRED',
    params            => json(jo.to_string));
end;
/

b. Run DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY:

-- select example

var params clob;
exec :params := '
{
  "provider": "<REST provider>",
  "credential_name": "<credential name>",
  "url": "<REST endpoint URL for text summarization service>",
  "model": "<REST provider text summarization model name>"
}';

select dbms_vector_chain.utl_to_summary(
  'A transaction is a logical, atomic unit of work that contains 
one or more SQL
    statements.
    An RDBMS must be able to group SQL statements so that they are 
either all
    committed, which means they are applied to the database, or all 
rolled back, which
    means they are undone.
    An illustration of the need for transactions is a funds 
transfer from a savings account to
    a checking account. The transfer consists of the following 
separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or 
fail as a unit. For
    example, if a hardware failure prevents a statement in the 
transaction from executing,
    then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If 
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you
    perform an atomic operation that updates several files, and if 
the system fails halfway
    through, then the files will not be consistent. In contrast, a 
transaction moves an
    Oracle database from one consistent state to another. The basic 
principle of a
    transaction is "all or nothing": an atomic operation succeeds 
or fails as a whole.', 
  json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'A transaction is a logical, atomic unit of work that 
contains one or more SQL
    statements.
    An RDBMS must be able to group SQL statements so that they are 
either all
    committed, which means they are applied to the database, or all 
rolled back, which
    means they are undone.
    An illustration of the need for transactions is a funds 
transfer from a savings account to
    a checking account. The transfer consists of the following 
separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or 
fail as a unit. For
    example, if a hardware failure prevents a statement in the 
transaction from executing,
    then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If 
you
    perform an atomic operation that updates several files, and if 
the system fails halfway
    through, then the files will not be consistent. In contrast, a 
transaction moves an
    Oracle database from one consistent state to another. The basic 
principle of a
    transaction is "all or nothing": an atomic operation succeeds 
or fails as a whole.';

  params := '
{
  "provider": "<REST provider>",
  "credential_name": "<credential name>",
  "url": "<REST endpoint URL for text summarization service>",
  "model": "<REST provider text summarization model name>"
}';
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  output := dbms_vector_chain.utl_to_summary(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Note:

For a list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

Replace provider, credential_name, url, and model with your own values.
Optionally, you can specify additional REST provider parameters. This is shown in
the following examples:

Cohere example:

{
  "provider"        : "cohere",
  "credential_name" : "COHERE_CRED",
  "url"             : "https://api.cohere.ai/v1/chat",
  "model"           : "command",
  "length"          : "medium",
  "format"          : "paragraph",
  "temperature"     : 1.0
}

Google AI example:

{
  "provider"         : "googleai",
  "credential_name"  : "GOOGLEAI_CRED",
  "url"              : "https://generativelanguage.googleapis.com/
v1beta/models/",
  "model"            : "gemini-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}
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Hugging Face example:

{
  "provider"         : "huggingface",
  "credential_name"  : "HF_CRED",
  "url"              : "https://api-inference.huggingface.co/
models/",
  "model"            : "facebook/bart-large-cnn"
}

OpenAI example:

{
  "provider"        : "openai",
  "credential_name" : "OPENAI_CRED",
  "url"             : "https://api.openai.com/v1/chat/completions",
  "model"           : "gpt-4o-mini",
  "max_tokens"      : 256,
  "temperature"     : 1.0
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://LOCATION-
aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/
publishers/google/models/",
  "model"            : "gemini-1.0-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}

A generated summary may appear as:

A transaction is a logical unit of work that groups one or more SQL 
statements
that must be executed as a unit, with all statements succeeding, or all
statements being rolled back. Transactions are a fundamental concept in
relational database management systems (RDBMS), and Oracle Database is
specifically designed to manage transactions, ensuring database 
consistency and
integrity. Transactions differ from file systems in that they maintain
atomicity, ensuring that all related operations succeed or fail as a whole,
maintaining database consistency regardless of intermittent failures.
Transactions move a database from one consistent state to another, and the
fundamental principle is that a transaction is committed or rolled back as 
a
whole, upholding the "all or nothing" principle.
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PL/SQL procedure successfully completed.

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass
your input data to transform into a different representation, including vectors.

• UTL_TO_SUMMARY
Use the DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY chainable utility function to generate a
summary for textual documents.

Generate Summary Using the Local REST Provider Ollama
Perform a text-to-summary transformation by accessing open LLMs, using the local host REST
endpoint provider Ollama.

Ollama is a free and open-source command-line interface tool that allows you to run open
LLMs (such as Llama 3, Phi 3, Mistral, or Gemma 2) locally and privately on your Linux,
Windows, or macOS systems. You can access Ollama as a service using SQL and PL/SQL
commands.

Here, you call the chainable utility function UTL_TO_SUMMARY.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To generate a concise and informative summary of a textual extract, by calling a local LLM
using Ollama:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
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EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Install Ollama and run a model locally.

a. Download and run the Ollama application from https://ollama.com/download.

You can either install Ollama as a service that runs in the background or as a
standalone binary with a manual install. For detailed installation-specific steps, see
Quick Start in the Ollama Documentation.

Note the following:

• The Ollama server needs to be able to connect to the internet so that it can
download the models. If you require a proxy server to access the internet,
remember to set the appropriate environment variables before running the Ollama
server. For example, to set for Linux:

-- set a proxy if you require one

export https_proxy=<proxy-hostname>:<proxy-port>
export http_proxy=<proxy-hostname>:<proxy-port>
export no_proxy=localhost,127.0.0.1,.example.com
export ftp_proxy=<proxy-hostname>:<proxy-port>

• If you are running Ollama and the database on different machines, then on the
database machine, you must change the URL to refer to the host name or IP
address that is running Ollama instead of the local host.

• You may need to change your firewall settings on the machine that is running
Ollama to allow the port through.
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b. If running Ollama as a standalone binary from a manual install, then start the server:

ollama serve

c. Run a model using the ollama run <model_name> command.

For example, to call the Llama 3 model:

ollama run llama3

For detailed information on this step, see Ollama Readme.

d. Verify that Ollama is running locally by using a cURL command.

For example:

-- get summary 

curl http://localhost:11434/api/generate -d '{
  "model" : "llama3",
  "prompt": "What is Oracle AI Vector Search?"
  "stream": false}'

3. Set proxy if one exists.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

4. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

5. Call UTL_TO_SUMMARY.

The Ollama service has a REST API endpoint for summarizing text. Specify the URL and
other configuration parameters in a JSON object.

var gent_ollama_params clob;
exec :gent_ollama_params := '{
  "provider": "ollama",
  "host"    : "local",
  "url"     : "http://localhost:11434/api/generate", 
  "model"   : "llama3"
}';

select dbms_vector_chain.utl_to_summary(
  'A transaction is a logical, atomic unit of work that contains one or 
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more SQL
    statements.
    An RDBMS must be able to group SQL statements so that they are either 
all
    committed, which means they are applied to the database, or all rolled 
back, which
    means they are undone.
    An illustration of the need for transactions is a funds transfer from 
a savings account to
    a checking account. The transfer consists of the following separate 
operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or fail 
as a unit. For
    example, if a hardware failure prevents a statement in the transaction 
from executing,
    then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If you
    perform an atomic operation that updates several files, and if the 
system fails halfway
    through, then the files will not be consistent. In contrast, a 
transaction moves an
    Oracle database from one consistent state to another. The basic 
principle of a
    transaction is "all or nothing": an atomic operation succeeds or fails 
as a whole.', 
  json(:gent_ollama_params)) from dual;

You can replace the url and model with your own values, as required.

Note:

For a complete list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

A generated summary may appear as:

A transaction in an RDBMS (Relational Database Management System) is a 
self-contained unit of work that 
consists of one or more SQL statements. This ensures that all changes made 
by the transaction are either
committed (applied to the database) or rolled back (undone). Oracle 
Database is specifically designed to
manage transactions, ensuring database consistency and integrity. 
Transactions differ from file systems in that they maintain atomicity, 
ensuring that all related operations
succeed or fail as a whole, maintaining database consistency regardless of 
intermittent failures. 
Transactions move a database from one consistent state to another, and the 
fundamental principle is that a 
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transaction is committed or rolled back as a whole, upholding the "all or 
nothing" principle.

Related Topics

• About Chainable Utility Functions and Common Use Cases
These are intended to be a set of chainable and flexible "stages" through which you pass
your input data to transform into a different representation, including vectors.

• UTL_TO_SUMMARY
Use the DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY chainable utility function to generate a
summary for textual documents.

Generate Text Response
In these examples, you can see how to generate a textual answer, description, or summary
based on the specified task in a given prompt.

A prompt can be an input text string, such as a question that you ask an LLM. For example,
"What is Oracle Text?". A prompt can also be a set of instructions or a command, such as
"Summarize the following ...", "Draft an email asking for ...", or "Rewrite the
following ...", and can include results from a search.

• Generate Text Using Public REST Providers
Perform a text-to-text transformation, using publicly hosted third-party text generation
models by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI. The
input is a textual prompt, and the generated output is a textual answer or description based
on the specified task in that prompt.

• Generate Text Using the Local REST Provider Ollama
Perform a text-to-text transformation by accessing open LLMs, using the local host REST
endpoint provider Ollama. The input is a textual prompt, and the generated output is a
textual answer or description based on the specified task in that prompt.

Generate Text Using Public REST Providers
Perform a text-to-text transformation, using publicly hosted third-party text generation models
by Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI. The input is a
textual prompt, and the generated output is a textual answer or description based on the
specified task in that prompt.

A prompt can be a text string (such as a question that you ask an LLM or a command), and
can include results from a search.

Here, you can use the UTL_TO_GENERATE_TEXT function from either the DBMS_VECTOR or the
DBMS_VECTOR_CHAIN package, depending on your use case.
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WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To generate a text response for the prompt "What is Oracle Text?", using an external LLM:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password
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2. Set proxy if one exists.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

4. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_GENERATE_TEXT:

• Using Generative AI:

a. Call CREATE_CREDENTIAL to create and store an OCI credential (OCI_CRED).

Generative AI requires the following authentication parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
"fingerprint"     : "<fingerprint>" 
}

You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_GENERATE_TEXT call.
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Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

exec dbms_vector_chain.drop_credential('OCI_CRED');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('user_ocid','<user ocid>');
  jo.put('tenancy_ocid','<tenancy ocid>');
  jo.put('compartment_ocid','<compartment ocid>');
  jo.put('private_key','<private key>');
  jo.put('fingerprint','<fingerprint>');
  dbms_vector_chain.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

Replace all the authentication parameter values. For example:

declare
  jo json_object_t;
begin

  -- create an OCI credential
  jo := json_object_t();
  
jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222
aa1111bb');
  
jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1
111222aaa111a');
  
jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233a
bababab1111222aba11ab');
  jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/
+');
  
jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1
a');
  dbms_vector_chain.create_credential(
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    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

b. Call UTL_TO_GENERATE_TEXT:

Here, the cohere.command-r-16k model is used. You can replace model with your
own value, as required.

Note:

For a list of all REST endpoint URLs and models that are supported to
use with Generative AI, see Supported Third-Party Provider Operations
and Endpoints.

-- select example

var params clob;
exec :params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';
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  output := dbms_vector_chain.utl_to_generate_text(input, 
json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Optionally, you can specify additional REST provider-specific parameters.

Note:

If you want to pass any additional REST provider-specific parameters,
then you must enclose those in chatRequest.

• Using Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI:

a. Call CREATE_CREDENTIAL to create and store a credential.

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following
authentication parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_GENERATE_TEXT call.

exec dbms_vector_chain.drop_credential('<credential name>');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', '<access token>');
  dbms_vector_chain.create_credential(
    credential_name   => '<credential name>',
    params            => json(jo.to_string));
end;
/

Replace the access_token and credential_name values. For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
  dbms_vector_chain.create_credential(
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    credential_name   => 'HF_CRED',
    params            => json(jo.to_string));
end;
/

b. Call UTL_TO_GENERATE_TEXT:

-- select example

var params clob;
exec :params := '
{
  "provider"       : "<REST provider>",
  "credential_name": "<credential name>",
  "url"            : "<REST endpoint URL for text generation 
service>",
  "model"          : "<REST provider text generation model name>"
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
  "provider"       : "<REST provider>",
  "credential_name": "<credential name>",
  "url"            : "<REST endpoint URL for text generation 
service>",
  "model"          : "<REST provider text generation model name>"
}';

  output := dbms_vector_chain.utl_to_generate_text(input, 
json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/
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Note:

For a list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

Replace provider, credential_name, url, and model with your own values.
Optionally, you can specify additional REST provider parameters. This is shown in
the following examples:

Cohere example:

{
  "provider"       : "Cohere", 
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.ai/v1/chat",
  "model"          : "command"
}

Google AI example:

{
  "provider"       : "googleai",
  "credential_name": "GOOGLEAI_CRED",
  "url"            : "https://generativelanguage.googleapis.com/
v1beta/models/",
  "model"          : "gemini-pro:generateContent"
}

Hugging Face example:

{
  "provider"       : "huggingface",
  "credential_name": "HF_CRED",
  "url"            : "https://api-inference.huggingface.co/models/",
  "model"          : "gpt2"
}

OpenAI example:

{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60,
  "temperature"    : 1.0
}

Vertex AI example:

{
  "provider"         : "vertexai",
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  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://LOCATION-
aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/
publishers/google/models/",
  "model"            : "gemini-1.0-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}

A response to your prompt may appear as:

BMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT(:INPUT,JSON(:PARAMS))
---------------------------------------------------------------------------
-----
Oracle Text is a powerful tool that enhances Oracle Database with 
integrated 
text mining and text analytics capabilities.

It enables users to extract valuable insights and make informed decisions 
by 
analyzing unstructured text data stored within the database.

Here are some enhanced capabilities offered by Oracle Text:

1. Full-Text Search: Enables powerful and rapid full-text searches across 
large
collections of documents. This helps users find relevant information 
quickly
and effectively, even within massive datasets.

2. Natural Language Processing: Implements advanced language processing 
techn
iques to analyze text and extract meaningful information. This includes 
capabilities
like tokenization, stemming, lemmatization, and part-of-speech tagging, 
which collectively facilitate efficient text processing and understanding.

3. Sentiment Analysis: Provides a deeper understanding of sentiment 
expressed
 in text. It enables businesses to automatically analyze customer 
opinions, feed
back, and reviews, helping them gain valuable insights into customer 
sentiment,
satisfaction levels, and potential trends.

4. Entity Recognition: Automatically identifies and categorizes entities 
with
in text, such as names of people, organizations, locations, or any other 
specific
terms of interest. This is useful in applications like customer 
relationship 
management, where linking relevant information to individuals or 
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organizations is
crucial.

5. Contextual Analysis: Delivers insights into the context and 
relationships
between entities and concepts in textual data. It helps organizations 
better und
erstand the broader implications and associations between entities, 
facilitating
 a deeper understanding of their data.

These features collectively empower various applications, enhancing the 
function
ality of the Oracle Database platform to allow businesses and 
organizations to 
derive maximum value from their unstructured text data.

Let me know if you'd like to dive deeper into any of these specific 
capabilities
, or if there are other aspects of Oracle Text you'd like to explore 
further.

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.

Related Topics

• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT chainable utility function to generate
a text response for a given prompt or an image, by accessing third-party text generation
models.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Generate Text Using the Local REST Provider Ollama
Perform a text-to-text transformation by accessing open LLMs, using the local host REST
endpoint provider Ollama. The input is a textual prompt, and the generated output is a textual
answer or description based on the specified task in that prompt.

A prompt can be a text string (such as a question that you ask an LLM or a command), and
can include results from a search.

Ollama is a free and open-source command-line interface tool that allows you to run open
LLMs (such as Llama 3, Phi 3, Mistral, or Gemma 2) locally and privately on your Linux,
Windows, or macOS systems. You can access Ollama as a service using SQL and PL/SQL
commands.
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Here, you can use the UTL_TO_GENERATE_TEXT function from either the DBMS_VECTOR or the
DBMS_VECTOR_CHAIN package, depending on your use case.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To generate a descriptive answer for the prompt "What is Oracle Text?", by calling a local
LLM using Ollama:

1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;
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c. Connect as the local user (docuser):

CONN docuser/password

2. Install Ollama and run a model locally.

a. Download and run the Ollama application from https://ollama.com/download.

You can either install Ollama as a service that runs in the background or as a
standalone binary with a manual install. For detailed installation-specific steps, see
Quick Start in the Ollama Documentation.

Note the following:

• The Ollama server needs to be able to connect to the internet so that it can
download the models. If you require a proxy server to access the internet,
remember to set the appropriate environment variables before running the Ollama
server. For example, to set for Linux:

-- set a proxy if you require one

export https_proxy=<proxy-hostname>:<proxy-port>
export http_proxy=<proxy-hostname>:<proxy-port>
export no_proxy=localhost,127.0.0.1,.example.com
export ftp_proxy=<proxy-hostname>:<proxy-port>

• If you are running Ollama and the database on different machines, then on the
database machine, you must change the URL to refer to the host name or IP
address that is running Ollama instead of the local host.

• You may need to change your firewall settings on the machine that is running
Ollama to allow the port through.

b. If running Ollama as a standalone binary from a manual install, then start the server:

ollama serve

c. Run a model using the ollama run <model_name> command.

For example, to call the Llama 3 model:

ollama run llama3

For detailed information on this step, see Ollama Readme.

d. Verify that Ollama is running locally by using a cURL command.

For example:

-- generate text

curl -X POST http://localhost:11434/api/generate -d '{
  "model" : "llama3",
  "prompt": "Why is the sky blue?",
  "stream": false }'

3. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');
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4. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

5. Call UTL_TO_GENERATE_TEXT.

The Ollama service has a REST API endpoint for generating text. Specify the URL and
other configuration parameters in a JSON object.

var gent_ollama_params clob;
exec :gent_ollama_params := '{
   "provider": "ollama",
   "host"    : "local",
   "url"     : "http://localhost:11434/api/generate", 
   "model"   : "llama3"
}';

select dbms_vector.utl_to_generate_text('What is Oracle Text?', 
json(:gent_ollama_params)) from dual;

You can replace the url and model with your own values, as required.

Note:

For a complete list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

The response to your prompt may appear as:

Oracle Text (formerly known as Oracle InterMedia) is a suite of text 
search and retrieval tools within Oracle Database. It allows you to index 
and query 
unstructured text data, such as documents, emails, and other text-based 
content.

With Oracle Text, you can:

1. Index text: Create indexes on text columns or external files, making it 
possible to efficiently search and retrieve relevant text data.
2. Query text: Use SQL syntax to query the indexed text data, allowing you 
to find specific words, phrases, or patterns within large volumes of 
text.
3. Full-text search: Perform full-text searches on unstructured text data, 
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returning relevant results based on keyword matches, proximity, and 
relevance.

Oracle Text supports various indexing schemes, including:

1. Basic Indexing: A simple, fast index for searching exact keywords.
2. Phrase Indexing: An index that allows you to search for phrases (e.g., 
"John Smith").
3. Thesaurus Indexing: An index that enables searches based on synonyms 
and related words.

Oracle Text also includes various text analysis and processing features, 
such as:

1. Tokenization: Breaking down text into individual words or tokens.
2. Stemming: Reducing words to their base form (e.g., "running" becomes 
"run").
3. Stopword removal: Eliminating common words like "the," "and," and "a" 
that don't add much value to the search.

Oracle Text is particularly useful in scenarios where you need to search, 
analyze, or retrieve unstructured text data, such as:

1. Content management: Searching and retrieving documents, articles, or 
other content.
2. Email archiving: Indexing and searching email messages.
3. Search engines: Building custom search solutions for specific domains 
or industries.

In summary, Oracle Text is a powerful tool within the Oracle Database that 
enables you to index, query, and retrieve unstructured text data with ease.

Related Topics

• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR.UTL_TO_GENERATE_TEXT chainable utility function to generate a text
response for a given prompt or an image, by accessing third-party text generation models.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Describe Image Content
In these examples, you can see how to generate a textual analysis or description of the
contents of a given image.

Here, you supply an image along with a text question as the prompt (for example, "What is
this image about?" or "How many birds are there in this image?"). The LLM responds
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with a textual answer or description based on the specified task in the prompt, which can then
be used for image classification, object detection, or similarity search.

• Describe Images Using Public REST Providers
Perform an image-to-text transformation by supplying an image along with a text question
as the prompt, using publicly hosted third-party LLMs by Google AI, Hugging Face,
OpenAI, or Vertex AI.

• Describe Images Using the Local REST Provider Ollama
Perform an image-to-text transformation by supplying an image along with a text question
as the prompt by accessing open LLMs, using the local host REST endpoint provider
Ollama.

Describe Images Using Public REST Providers
Perform an image-to-text transformation by supplying an image along with a text question as
the prompt, using publicly hosted third-party LLMs by Google AI, Hugging Face, OpenAI, or
Vertex AI.

Here, you can use the UTL_TO_GENERATE_TEXT function from either the DBMS_VECTOR or the
DBMS_VECTOR_CHAIN package, depending on your use case.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To generate a text response by prompting with the following image and the text question
"Describe this image?", using an external LLM:

1. Connect to Oracle Database as a local user.
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a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

3. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.

This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/
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4. Create a local directory (DEMO_DIR) to store your image file:

create or replace directory DEMO_DIR as '/my_local_dir/';

create or replace function load_blob_from_file(directoryname varchar2, 
filename varchar2)
  return blob
is
  filecontent blob := null;
  src_file bfile := bfilename(directoryname, filename);
  offset number := 1;
begin
  dbms_lob.createtemporary(filecontent, true, dbms_lob.session);
  dbms_lob.fileopen(src_file, dbms_lob.file_readonly);
  dbms_lob.loadblobfromfile(filecontent, src_file,
    dbms_lob.getlength(src_file), offset, offset);
  dbms_lob.fileclose(src_file);
  return filecontent;
end;
/

Upload the image file (for example, bird.jpg) to the directory.

5. Set up your credentials for the REST provider that you want to access and then call
UTL_TO_GENERATE_TEXT:

a. Call CREATE_CREDENTIAL to create and store a credential.

Google AI, Hugging Face, OpenAI, and Vertex AI require the following authentication
parameter:

{ "access_token": "<access token>" }
You will later refer to this credential name when declaring JSON parameters for the
UTL_TO_GENERATE_TEXT call.

exec dbms_vector_chain.drop_credential('<credential name>');

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', '<access token>');
  dbms_vector_chain.create_credential(
    credential_name   => '<credential name>',
    params            => json(jo.to_string));
end;
/

Replace access_token and credential_name with your own values. For example:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'AbabA1B123aBc123AbabAb123a1a2ab');
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  dbms_vector_chain.create_credential(
    credential_name   => 'HF_CRED',
    params            => json(jo.to_string));
end;
/

b. Call UTL_TO_GENERATE_TEXT:

-- select example

var input clob;
var media_data blob;
var media_type clob;
var params clob;

begin
  :input := 'Describe this image';
  :media_data := load_blob_from_file('DEMO_DIR', 'bird.jpg');
  :media_type := 'image/jpeg';
  :params := '
{
  "provider"       : "<REST provider>",
  "credential_name": "<credential name>",
  "url"            : "<REST endpoint URL for text generation service>",
  "model"          : "<REST provider text generation model name>",
  "max_tokens"     : <maximum number of tokens in the output text>
}';
end;
/

select 
dbms_vector_chain.utl_to_generate_text(:input, :media_data, :media_type,
 json(:params));

-- PL/SQL example

declare
  input clob;
  media_data blob;
  media_type varchar2(32);
  params clob;
  output clob;
begin
  input := 'Describe this image';
  media_data := load_blob_from_file('DEMO_DIR', 'bird.jpg');
  media_type := 'image/jpeg';
  params := '
{
  "provider"       : "<REST provider>",
  "credential_name": "<credential name>",
  "url"            : "<REST endpoint URL for text generation service>",
  "model"          : "<REST provider text generation model name>",
  "max_tokens"     : <maximum number of tokens in the output text>
}';

  output := dbms_vector_chain.utl_to_generate_text(
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    input, media_data, media_type, json(params));
  dbms_output.put_line(output);

  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
  if media_data is not null then
    dbms_lob.freetemporary(media_data);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Note:

For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

Replace provider, credential_name, url, and model with your own values. Optionally,
you can specify additional REST provider parameters. This is shown in the following
examples:

Google AI example:

{
  "provider"       : "googleai",
  "credential_name": "GOOGLEAI_CRED",
  "url"            : "https://generativelanguage.googleapis.com/v1beta/
models/",
  "model"          : "gemini-pro:generateContent"
}

Hugging Face example:

{
  "provider"       : "huggingface",
  "credential_name": "HF_CRED",
  "url"            : "https://api-inference.huggingface.co/models/",
  "model"          : "gpt2"
}

Note:

Hugging Face uses an image captioning model, which does not require a
prompt. If you input a prompt along with an image, then the prompt will be
ignored.
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OpenAI example:

{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://LOCATION-aiplatform.googleapis.com/v1/
projects/PROJECT/locations/LOCATION/publishers/google/models/",
  "model"            : "gemini-1.0-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}

A generated text response to your question may appear as:

This image showcases a stylized, artistic depiction of a hummingbird in
mid-flight, set against a vibrant red background. The bird is illustrated 
with a
mix of striking colors and details - its head and belly are shown in 
white, with
a black patterned detailing that resembles stripes or scales. Its long, 
slender
beak is depicted in a darker color, extending forwards. The hummingbird's 
wings
and tail are rendered in eye-catching shades of orange, purple, and red, 
with
texture that suggests a rough, perhaps brush-like stroke.

The background features abstract shapes resembling clouds or wind currents 
in a white line
pattern, which adds a sense of motion or air dynamics around the bird. The
overall use of vivid colors and dynamic patterns gives the image an 
energetic
and modern feel.

This example uses the default settings for each provider. For detailed information on additional
parameters, refer to your third-party provider's documentation.
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Related Topics

• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT chainable utility function to generate
a text response for a given prompt or an image, by accessing third-party text generation
models.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Describe Images Using the Local REST Provider Ollama
Perform an image-to-text transformation by supplying an image along with a text question as
the prompt by accessing open LLMs, using the local host REST endpoint provider Ollama.

Ollama is a free and open-source command-line interface tool that allows you to run open
LLMs (such as Llama 3, Llava, Phi 3, Mistral, or Gemma 2) locally and privately on your Linux,
Windows, or macOS systems. You can access Ollama as a service using SQL and PL/SQL
commands.

Here, you can use the UTL_TO_GENERATE_TEXT function from either the DBMS_VECTOR or the
DBMS_VECTOR_CHAIN package, depending on your use case.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To describe the contents of an image, by prompting with the following image of a bird and the
text question "Describe this image?", by calling a local LLM using Ollama:
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1. Connect to Oracle Database as a local user.

a. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

CREATE TABLESPACE tbs1
DATAFILE 'tbs5.dbf' SIZE 20G AUTOEXTEND ON
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 10000
SET LONG 10000

b. Create a local user (docuser) and grant necessary privileges:

DROP USER docuser cascade;

CREATE USER docuser identified by docuser DEFAULT TABLESPACE tbs1 quota 
unlimited on tbs1;

GRANT DB_DEVELOPER_ROLE, create credential to docuser;

c. Connect as the local user (docuser):

CONN docuser/password

2. Install Ollama and run a model locally.

a. Download and run the Ollama application from https://ollama.com/download.
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You can either install Ollama as a service that runs in the background or as a
standalone binary with a manual install. For detailed installation-specific steps, see
Quick Start in the Ollama Documentation.

Note the following:

• The Ollama server needs to be able to connect to the internet so that it can
download the models. If you require a proxy server to access the internet,
remember to set the appropriate environment variables before running the Ollama
server. For example, to set for Linux:

-- set a proxy if you require one

export https_proxy=<proxy-hostname>:<proxy-port>
export http_proxy=<proxy-hostname>:<proxy-port>
export no_proxy=localhost,127.0.0.1,.example.com
export ftp_proxy=<proxy-hostname>:<proxy-port>

• If you are running Ollama and the database on different machines, then on the
database machine, you must change the URL to refer to the host name or IP
address that is running Ollama instead of the local host.

• You may need to change your firewall settings on the machine that is running
Ollama to allow the port through.

b. If running Ollama as a standalone binary from a manual install, then start the server:

ollama serve

c. Run a model using the ollama run <model_name> command.

For example, to call the llava model:

ollama run llava

For detailed information on this step, see Ollama Readme.

d. Verify that Ollama is running locally by using a cURL command.

For example:

-- generate text

curl -X POST http://localhost:11434/api/generate -d '{
  "model" : "llava",
  "prompt": "Why is the sky blue?",
  "stream": false }'

3. Set the HTTP proxy server, if configured.

EXEC UTL_HTTP.SET_PROXY('<proxy-hostname>:<proxy-port>');

4. Grant connect privilege to docuser for allowing connection to the host, using the
DBMS_NETWORK_ACL_ADMIN procedure.
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This example uses * to allow any host. However, you can explicitly specify the host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'docuser',
                       principal_type => xs_acl.ptype_db));
END;
/

5. Create a local directory (DEMO_DIR) to store your image file:

create or replace directory DEMO_DIR as '/my_local_dir/';

create or replace function load_blob_from_file(directoryname varchar2, 
filename varchar2)
  return blob
is
  filecontent blob := null;
  src_file bfile := bfilename(directoryname, filename);
  offset number := 1;
begin
  dbms_lob.createtemporary(filecontent, true, dbms_lob.session);
  dbms_lob.fileopen(src_file, dbms_lob.file_readonly);
  dbms_lob.loadblobfromfile(filecontent, src_file,
    dbms_lob.getlength(src_file), offset, offset);
  dbms_lob.fileclose(src_file);
  return filecontent;
end;
/

Upload the image file (for example, bird.jpg) to the directory.

6. Call UTL_TO_GENERATE_TEXT.

The Ollama service has a REST API endpoint for generating text. Specify the URL and
other configuration parameters in a JSON object.

var input clob;
var media_data blob;
var media_type clob;
var gent_ollama_params clob;

  :input := 'Describe this image';
  :media_data := load_blob_from_file('DEMO_DIR', 'bird.jpg');
  :media_type := 'image/jpeg';
  :gent_ollama_params := '{
     "provider": "ollama",
     "host"    : "local",
     "url"     : "http://localhost:11434/api/generate", 
     "model"   : "llava"
  }';

select 
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dbms_vector_chain.utl_to_generate_text(:input, :media_data, :media_type, 
json(:gent_ollama_params)) from dual;

You can replace url and model with your own values, as required.

Note:

For a complete list of all supported REST endpoint URLs, see Supported Third-
Party Provider Operations and Endpoints.

A generated text response to your question may appear as:

This is an image of a stylized, artistic depiction of a hummingbird in
mid-flight, set against a vibrant red background. The bird is illustrated 
with a
mix of striking colors and details - its head and belly are shown in 
white, with
a black patterned detailing that resembles stripes or scales. Its long, 
slender
beak is depicted in a darker color, extending forwards. The hummingbird's 
wings
and tail are rendered in eye-catching shades of orange, purple, and red, 
with
texture that suggests a rough, perhaps brush-like stroke.

The background features abstract shapes resembling clouds or wind currents 
in a white line
pattern, which adds a sense of motion or air dynamics around the bird. The
overall use of vivid colors and dynamic patterns gives the image an 
energetic
and modern feel.

Related Topics

• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT chainable utility function to generate
a text response for a given prompt or an image, by accessing third-party text generation
models.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.
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Use Retrieval Augmented Generation to Complement LLMs
RAG lets you mitigate the inaccuracies and hallucinations faced when using LLMs. Oracle AI
Vector Search enables RAG within Oracle Database using the DBMS_VECTOR_CHAIN PL/SQL
package or through popular frameworks (such as LangChain).

• About Retrieval Augmented Generation
Oracle AI Vector Search supports Enterprise Retrieval Augmented Generation (RAG) to
enable sophisticated queries that can combine vectors with relational data, graph data,
spatial data, and JSON collections.

• SQL RAG Example
This scenario allows you to run a similarity search for specific documentation content
based on a user query. Once documentation chunks are retrieved, they are concatenated
and a prompt is generated to ask an LLM to answer the user question using retrieved
chunks.

• Oracle AI Vector Search Integration with LangChain
LangChain is a powerful and flexible open source orchestration framework that helps
developers build applications that leverage the advanced capabilities of large language
models (LLMs).

• Oracle AI Vector Search Integration with LlamaIndex
LlamaIndex is an open-source data framework designed to simplify the process of building
applications that leverage large language models (LLMs) with custom data. Basically,
LlamaIndex acts as a bridge between custom data sources and LLMs such as Cohere
Command models or OpenAI GPTs models.

• Use Reranking for Better RAG Results
Reranking models are primarily used to reassess and reorder an initial set of search
results. This helps to improve the relevance and quality of search results in both similarity
search and Retrieval Augmented Generation (RAG) scenarios.

About Retrieval Augmented Generation
Oracle AI Vector Search supports Enterprise Retrieval Augmented Generation (RAG) to enable
sophisticated queries that can combine vectors with relational data, graph data, spatial data,
and JSON collections.

Retrieval Augmented Generation is an approach developed to address the limitations of
LLMs. RAG combines the strengths of pretrained language models with the ability to retrieve
recent and accurate information from a dataset or database in real-time during the generation
of responses.

By communicating with LLMs through the implementation of RAG, the knowledge of LLMs is
increased with business data found through AI Vector Search.

The primary problem with LLMs, such as GPT (Generative Pretrained Transformer), is that
they generate responses based solely on the patterns and data they were trained on up to the
point of their last update. This means that they inherently lack the ability to access or
incorporate new, real-time information after their training is cut off, potentially limiting their
responses to outdated or incomplete information. LLMs do not know about your private
company data. Consequently, LLMs can make up answers (hallucinate) when they do not have
enough relevant and up-to-date facts.

By providing your LLM with up-to-date facts from your company, you can minimize the
probability that an LLM will hallucinate.
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Figure 9-1    Example RAG Workflow

Here is how RAG improves upon the issues with traditional LLMs:

• Access to External and Private Information: RAG can pull in data from external and
private sources during its response generation process. This allows it to provide answers
that are up-to-date and grounded in the latest available information, which is crucial for
queries requiring current knowledge or specific details not included in its original training
data.

• Factually More Accurate and Detailed Responses: While traditional LLMs are trained
on older data, RAG incorporates real-time retrieved information, meaning that generated
responses are not only contextually rich but also factually more up-to-date and accurate as
time goes on. This is particularly beneficial for queries that require precision and detail,
such as scientific facts, historical data, or specific statistics.

• Reduced Hallucination: LLMs can sometimes "hallucinate" information, as in generate
plausible but false or unverified content. RAG mitigates this by grounding responses in
retrieved documents, thereby enhancing the reliability of the information provided.

Oracle AI Vector Search enables RAG within Oracle Database using the DBMS_VECTOR_CHAIN
PL/SQL package. Alternatively, you can implement RAG externally by using popular
frameworks such as LangChain.

LangChain is a popular open source framework that encapsulates popular LLMs, vector
databases, document stores, and embedding models. DBMS_VECTOR_CHAIN is a PL/SQL
package that provides the ability to create RAG solutions, all within the database. With
DBMS_VECTOR_CHAIN, your data never needs to leave the security of Oracle Database.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details about the
DBMS_VECTOR_CHAIN package
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SQL RAG Example
This scenario allows you to run a similarity search for specific documentation content based on
a user query. Once documentation chunks are retrieved, they are concatenated and a prompt
is generated to ask an LLM to answer the user question using retrieved chunks.

1. Start SQL*Plus and connect to Oracle Database as a local test user.

a. Log in to SQL*Plus as the sys user, connecting as sysdba:

conn sys/password AS sysdba

SET SERVEROUTPUT ON;
SET ECHO ON;
SET LONG 100000;

b. Create a local test user (vector) and grant necessary privileges:

DROP USER vector cascade;

CREATE USER vector identified by <my vector password>

GRANT DB_DEVELOPER_ROLE, CREATE CREDENTIAL TO vector;

c. Set the proxy if one exists:

EXEC UTL_HTTP.SET_PROXY('<my proxy full name>:<my proxy port>');

d. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that
you want to connect to.

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'VECTOR',
                       principal_type => xs_acl.ptype_db));
END;
/

e. Connect to Oracle Database as the test user.

conn docuser/password;

2. Create a credential for Oracle Cloud Infrastructure Generative AI:

a. Run DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL to create and store an OCI credential
(OCI_CRED).
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OCIGenAI requires the following parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
"fingerprint"     : "<fingerprint>" 
}

Note:

The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END
lines), either as a single line or as multiple lines.

BEGIN
  DBMS_VECTOR_CHAIN.DROP_CREDENTIAL(credential_name => 'OCI_CRED');
EXCEPTION
  WHEN OTHERS THEN NULL;
END;
/

DECLARE
  jo json_object_t;
BEGIN
  jo := json_object_t();
  jo.put('user_ocid', '<user ocid>');
  jo.put('tenancy_ocid', '<tenancy ocid>');
  jo.put('compartment_ocid', '<compartment ocid>');
  jo.put('private_key', '<private key>');
  jo.put('fingerprint', '<fingerprint>');
  DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL(
    credential_name => 'OCID_CRED',
    params          => json(jo.to_string));
END;
/
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b. Check credential creation:

col owner format a15
col credential_name format a20
col username format a20

SELECT owner, credential_name, username
FROM all_credentials
ORDER BY owner, credential_name, username;

3. Generate a prompt using similarity search results:

Note:

For information about loading the ONNX format model into the database as
doc_model, see Import ONNX Models into Oracle Database End-to-End
Example.

SET SERVEROUTPUT ON;

VAR prompt CLOB;
VAR user_question CLOB;
VAR context CLOB;

BEGIN
  -- initialize the concatenated string
  :context := '';

  -- read this question from the user
  :user_question := 'what are vector indexes?';

  -- cursor to fetch chunks relevant to the user's query
  FOR rec IN (SELECT EMBED_DATA
              FROM doc_chunks
              WHERE DOC_ID = 'Vector User Guide'
              ORDER BY vector_distance(embed_vector, vector_embedding(
                  doc_model using :user_question as data), COSINE)
              FETCH EXACT FIRST 10 ROWS ONLY)
  LOOP
    -- concatenate each value to the string
    :context := :context || rec.embed_data;
  END LOOP;

  -- concatenate strings and format it as an enhanced prompt to the LLM
  :prompt := 'Answer the following question using the supplied context 
                assuming you are a subject matter expert. Question: '
                || :user_question || ' Context: ' || :context;

  DBMS_OUTPUT.PUT_LINE('Generated prompt: ' || :prompt);
END;
/
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4. Issue the GenAI call:

Note:

For a list of all supported REST endpoints, see Supported Third-Party Provider
Operations and Endpoints.

DECLARE
  input CLOB;
  params CLOB;
  output CLOB;
BEGIN
  input := :prompt;
  params := '{
    "provider" : "ocigenai",
    "credential_name" : "OCI_CRED",
    "url" : "https://inference.generativeai.us-chicago-1.oci.
            oraclecloud.com/20231130/actions/generateText",
    "model" : "cohere.command"
  }';

  output := DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT(input, json(params));
  DBMS_OUTPUT.PUT_LINE(output);
  IF output IS NOT NULL THEN
    DBMS_LOB.FREETEMPORARY(output);
  END IF;
EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE(SQLERRM);
    DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/

Oracle AI Vector Search Integration with LangChain
LangChain is a powerful and flexible open source orchestration framework that helps
developers build applications that leverage the advanced capabilities of large language models
(LLMs).

LangChain provides essential tools for managing workflows, maintaining context, and
integrating with external systems. For example, the LangChain framework allows you to create
Chatbots and agent applications. LangChain primarily supports Python but also has support for
JavaScript and TypeScript.

Oracle AI Vector Search integrates with LangChain at various levels:

• Document Loaders

• Text Splitter

• Embeddings

• Summary

• Vector Store
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For more information about each of these components, see LangChain Oracle AI Vector
Search documentation.

See Also:

• LangChain documentation for an introduction to the LangChain framwork

• LangChain component documentation for a list of LangChain components

• LangChain installation documentation to learn how to install LangChain
packages in Python

• Oracle AI Vector Search integration demo for an end-to-end tutorial that
demonstrates how Oracle AI Vector Search can be used with LangChain to serve
as an end-to-end RAG pipeline

Oracle AI Vector Search Integration with LlamaIndex
LlamaIndex is an open-source data framework designed to simplify the process of building
applications that leverage large language models (LLMs) with custom data. Basically,
LlamaIndex acts as a bridge between custom data sources and LLMs such as Cohere
Command models or OpenAI GPTs models.

Oracle AI Vector Search is integrated with LlamaIndex in several ways to enable powerful
semantic search and retrieval capabilities.

Here are the key aspects of this integration:

• Embedding Generation

Oracle AI Vector Search provides embedding capabilities that can be used with
LlamaIndex:

– The OracleEmbeddings class from LlamaIndex can be used to generate embeddings
using Oracle's embedding models.

– Multiple embedding methods are supported, including locally-hosted ONNX models
and third-party APIs such as Generative AI and Hugging Face.

– Embeddings can be generated for documents and queries to enable semantic
similarity search.

For more information on how to use this integration for generating embeddings, see Oracle
AI Vector Search: Use Embedding Generation Capabilities.

• Vector Storage

LlamaIndex can leverage Oracle Database as a vector store:

– Vector embeddings can be stored alongside business data in Oracle Database tables
using the VECTOR data type.

– This allows combining semantic search on unstructured data with relational queries on
structured data in a single system.

For more information on how to use this integration for vector storage, see Oracle AI
Vector Search: Use Vector Storage Capabilities.

• Indexing and Search
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You can utilize Oracle's vector indexing and search capabilities:

– Vector indexes can be created on the embeddings to enable fast similarity search.

– LlamaIndex can use Oracle's native SQL operations for similarity search to retrieve
relevant data.

– Various distance metrics, such as dot product, cosine similarity, Euclidean distance,
and more are supported.

For more information about how to use this integration for indexing and search, see Oracle
AI Vector Search: Use Document Processing Capabilities and Oracle AI Vector Search:
End-to-End Pipeline with Document Processing.

• RAG Pipeline Integration

The integration enables building end-to-end Retrieval Augmented Generation (RAG)
pipelines. You can embed and store unstructured data in Oracle Database. LlamaIndex
can query the vector store to retrieve relevant context. The retrieved information can be
used to generate prompts for LLMs.

LlamaIndex provides several libraries and classes to integrate Oracle AI Vector Search
capabilities. Here are the key components available:

– OracleEmbeddings: Supports multiple embedding methods, including locally hosted
ONNX models and third-party APIs such as Generative AI and Hugging Face.

– OracleReader: Used for loading documents from various sources, including Oracle
Database.

– OracleSummary: Provides functionality for summarizing documents within or outside the
database.

– OracleTextSplitter: Offers advanced Oracle capabilities for chunking documents
according to different requirements.

– OraLlamaVS: Used for storing, indexing, and querying vector embeddings.

For more information about how to use this integration for building end-to-end RAG
pipelines, see Oracle AI Vector Search: End-to-End Pipeline with Document Processing.

Benefits

The Oracle AI Vector Search integration with LlamaIndex provides a powerful foundation for
developing sophisticated AI applications that can leverage both structured and unstructured
data within the Oracle ecosystem.

By integrating Oracle AI Vector Search with LlamaIndex, developers can:

• Leverage Oracle Database's enterprise features such as scalability, security, and
transactions.

• Combine semantic search with relational queries in one single system.

• Utilize Oracle's optimized vector operations for efficient similarity search.

• Build AI-powered applications using familiar SQL and PL/SQL interfaces.
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Use Reranking for Better RAG Results
Reranking models are primarily used to reassess and reorder an initial set of search results.
This helps to improve the relevance and quality of search results in both similarity search and
Retrieval Augmented Generation (RAG) scenarios.

In a RAG scenario, reranking plays a crucial role in improving the quality of information
ingested into an LLM by ensuring that the most relevant documents or chunks are prioritized.
This can reduce hallucinations and improve the accuracy of generated outputs. The reranking
step is typically performed after an initial search that uses a faster but less precise embedding
model. The reranker helps to identify the most pertinent information for a given query, but is
more expensive in terms of resources because it often employs sophisticated matching
methods that go beyond simple vector comparisons.

Here, you can use the RERANK function from either the DBMS_VECTOR or the DBMS_VECTOR_CHAIN
package, depending on your use case.

Oracle AI Vector Search supports reranking models provided by Cohere and Vertex AI.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

To rerank results for the query "What are some interesting characteristics of the
Jovian satellites?", using a third-party reranking model:

1. Log in to SQL*Plus as the SYS user, connecting as SYSDBA:

conn sys/password as sysdba

2. Create a local user (vector) and grant necessary privileges:

DROP USER vector cascade;

CREATE USER vector identified by <my vector password>

GRANT DB_DEVELOPER_ROLE, CREATE CREDENTIAL TO vector;

3. Set proxy if one exists.

EXEC UTL_HTTP.SET_PROXY('<my proxy full name>:<my proxy port>');
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4. Grant connect privilege for a host using the DBMS_NETWORK_ACL_ADMIN procedure. This
example uses * to allow any host. However, you can explicitly specify each host that you
want to connect to:

BEGIN
  DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
    host => '*',
    ace => xs$ace_type(privilege_list => xs$name_list('connect'),
                       principal_name => 'VECTOR',
                       principal_type => xs_acl.ptype_db));
END;
/

5. Connect to Oracle Database as the test user:

conn vector/password;

6. Simulate the initial retrieval step that returns, in the specified order, potentially relevant
documents for the following query: "What are some interesting characteristics of
the Jovian satellites?":

set echo on

set serveroutput on

var query clob;

var initial_retrieval_docs clob;

exec :query := 'What are some interesting characteristics of the Jovian 
satellites?';

begin
  :initial_retrieval_docs := '
{
   "documents": [
                 "Jupiter boasts an impressive system of 95 known moons, 
including the four largest Galilean satellites.",
                 "Jupiter's immense mass, 318 times that of Earth, 
significantly influences the orbits of other bodies in the Solar System.",
                 "Io, one of Jupiter's Galilean moons, is the most 
volcanically active body in our solar system.",
                 "The gas giant completes one orbit around the Sun in just 
under 12 years, traveling at an average speed of 13 kilometers per 
second.",
                 "Jupiter's composition is similar to that of the Sun, and 
it could have become a brown dwarf if its mass had been 80 times greater."
                ]
}';
end;
/

7. Set up your credentials for the REST provider that you want to access, that is, Cohere or
Vertex AI. Here, replace <access token> with your own values:
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• Cohere example:

EXEC DBMS_VECTOR.DROP_CREDENTIAL('COHERE_CRED');

DECLARE
   jo json_object_t;
BEGIN
   jo := json_object_t();
   jo.put('access_token', '<access token>');
   DBMS_VECTOR.CREATE_CREDENTIAL(
          credential_name => 'COHERE_CRED',
          params => json(jo.to_string));
END;
/

• Vertex AI example:

begin
   dbms_vector_chain.drop_credential(credential_name  => 
'VERTEXAI_CRED');
exception
   when others then null;
end;
/

declare
   jo json_object_t;
begin
   jo := json_object_t();
   jo.put('access_token', '<access token>');
   dbms_vector_chain.create_credential(
          credential_name   =>  'VERTEXAI_CRED',
          params            => json(jo.to_string));
end;
/

8. Rerank the initial retrieval:

Note:

For a list of all supported REST endpoints, see Supported Third-Party Provider
Operations and Endpoints.

• Using the Cohere rerank-english-v3.0 model:

declare
  params clob;
  reranked_output json;
begin
  params := '
{
  "provider": "cohere",
  "credential_name": "COHERE_CRED",
  "url": "https://api.cohere.com/v1/rerank",
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  "model": "rerank-english-v3.0",
  "return_documents": true,
  "top_n": 3
}';

  reranked_output := dbms_vector_chain.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

• Using the Vertex AI semantic-ranker-512 model:

declare
  params clob;
  reranked_output json;
begin
  params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://discoveryengine.googleapis.com/v1/projects/
1085581009881/locations/global/rankingConfigs/
default_ranking_config:rank",
  "model": "semantic-ranker-512@latest",
  "ignoreRecordDetailsInResponse": false,
  "topN": 3
}';

  reranked_output := dbms_vector_chain.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

Using the above Cohere model, the reranked results appear as follows:

[
   {
     "index" : "0",
     "score" : "0.059319142",
     "content" : "Jupiter boasts an impressive system of 95 known moons, 
including the four largest Galilean satellites."
   },
   {
     "index" : "2",
     "score" : "0.04352814",
     "content" : "Io, one of Jupiter's Galilean moons, is the most 
volcanically active body in our solar system."
   },
   {
     "index" : "4",
     "score" : "0.04138472",
     "content" : "Jupiter's composition is similar to that of the Sun, and it 
could have become a brown dwarf if its mass had been 80 times greater."
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   }
]

Related Topics

• RERANK
Use the DBMS_VECTOR_CHAIN.RERANK function to reassess and reorder an initial set of
results to retrieve more relevant search output.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

Supported Third-Party Provider Operations and Endpoints
Review a list of third-party REST providers and REST endpoints that are supported for various
vector generation, summarization, text generation, and reranking operations.

• Public or Remote REST Endpoint Providers

• Local REST Endpoint Provider

• REST Operations

• REST Endpoints

• Models Supported for Generative AI

Public or Remote REST Endpoint Providers

The supported publicly-hosted, third-party REST endpoint providers are:

• Cohere

• Google AI

• Hugging Face

• Oracle Cloud Infrastructure (OCI) Generative AI

• OpenAI

• Vertex AI

Local REST Endpoint Provider

You can use Ollama as a third-party REST endpoint provider, locally and privately on your
Linux, Windows, and macOS systems.

Ollama is a free and open-source command-line interface tool that allows you to run open
LLMs (such as Llama 3, Phi 3, Mistral, and Gemma 2) and embedding models (such as mxbai-
embed-large, nomic-embed-text, or all-minilm). You can access Ollama using SQL and
PL/SQL commands.

You can download and run the Ollama application from https://ollama.com/download. You can
either install Ollama as a service that runs in the background or as a standalone binary with a

Chapter 9
Supported Third-Party Provider Operations and Endpoints

9-53

https://ollama.com/download


manual install. For detailed installation-specific steps, see Quick Start in the Ollama
Documentation.

REST Operations

These are the supported third-party REST operations and APIs along with their corresponding
REST providers:

Operation Provider API

Generate embedding:

Convert textual
documents and images
to one or more vector
embeddings

• For text input:

All supported public
and local providers

• For image input:

Vertex AI

• DBMS_VECTOR.UTL_TO_EMBEDDING and
DBMS_VECTOR.UTL_TO_EMBEDDINGS

• DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDI
NG and
DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDI
NGS

Generate summary:

Extract a brief and
comprehensive
summary from textual
documents

All supported public and
local providers

• DBMS_VECTOR_CHAIN.UTL_TO_SUMMAR
Y

Generate text:

Retrieve a descriptive
response for textual
prompts and images
through conversations
with LLMs

• For text input:

All supported public
and local providers

• For image input:

Google AI, Hugging
Face, OpenAI,
Ollama, and Vertex
AI

• DBMS_VECTOR.UTL_TO_GENERATE_TEXT
• DBMS_VECTOR_CHAIN.UTL_TO_GENERAT

E_TEXT

Rerank results:

Reassess and reorder
search results to retrieve
a more relevant output

Cohere and Vertex AI • DBMS_VECTOR.RERANK
• DBMS_VECTOR_CHAIN.RERANK

REST Endpoints

These are the supported REST endpoints for all third-party REST providers:

API Provider Endpoint

UTL_TO_EMBEDDING
and

UTL_TO_EMBEDDINGS

Cohere https://api.cohere.ai/v1/embed
Generative AI https://inference.generativeai.us-

chicago-1.oci.oraclecloud.com/20231130/actions/
embedText

Google AI https://generativelanguage.googleapis.com/
v1beta/models/

Hugging Face https://api-inference.huggingface.co/pipeline/
feature-extraction/

Ollama http://localhost:11434/api/embeddings
OpenAI https://api.openai.com/v1/embeddings
Vertex AI https://LOCATION-aiplatform.googleapis.com/v1/

projects/PROJECT/locations/LOCATION/publishers/
google/models/
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API Provider Endpoint

UTL_TO_SUMMARY Cohere https://api.cohere.ai/v1/chat
https://api.cohere.ai/v1/summarize

Generative AI https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/
chat

Google AI https://generativelanguage.googleapis.com/
v1beta/models/

Hugging Face https://api-inference.huggingface.co/models/
Ollama http://localhost:11434/api/generate
OpenAI https://api.openai.com/v1/chat/completions

https://api.openai.com/v1/completions
Vertex AI https://LOCATION-aiplatform.googleapis.com/v1/

projects/PROJECT/locations/LOCATION/publishers/
google/models/

UTL_TO_GENERATE_TEXT Cohere https://api.cohere.ai/v1/chat
https://api.cohere.ai/v1/generate

Generative AI https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/
chat

Google AI https://generativelanguage.googleapis.com/
v1beta/models/

Hugging Face https://api-inference.huggingface.co/models/
Ollama http://localhost:11434/api/generate
OpenAI https://api.openai.com/v1/chat/completions

https://api.openai.com/v1/completions
Vertex AI https://LOCATION-aiplatform.googleapis.com/v1/

projects/PROJECT/locations/LOCATION/publishers/
google/models/

RERANK Cohere https://api.cohere.com/v1/rerank
Vertex AI https://discoveryengine.googleapis.com/v1/

projects/PROJECT/locations/global/
rankingConfigs/default_ranking_config:rank

Models Supported for Generative AI

These are the third-party models that are supported to use with Generative AI corresponding to
each REST API:

API Model

UTL_TO_EMBEDDING
and

UTL_TO_EMBEDDINGS

cohere.embed-english-v3.0

cohere.embed-multilingual-v3.0

cohere.embed-english-light-v3.0

cohere.embed-multilingual-light-v3.0
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API Model

UTL_TO_SUMMARY cohere.command-r-16k

cohere.command-r-plus

meta.llama-3.1-70b-instruct

meta.llama-3.1-405b-instruct

UTL_TO_GENERATE_TEXT cohere.command-r-16k

cohere.command-r-plus

meta.llama-3.1-70b-instruct

meta.llama-3.1-405b-instruct

Chapter 9
Supported Third-Party Provider Operations and Endpoints

9-56



10
Supported Clients and Languages

For more information about Oracle AI Vector Search support using some of Oracle's available
clients and languages, see the included reference material.

Clients and Languages Reference Material

PL/SQL Oracle Database PL/SQL Language Reference

MLE JavaScript Oracle Database JavaScript Developer's Guide

JDBC Oracle Database JDBC Developer’s Guide

Node.js node-oracledb documentation

Python python-oracledb documentation

Oracle Call Interface Oracle Call Interface Developer's Guide

ODP.NET Oracle Data Provider for .NET Developer's Guide

SQL*Plus SQL*Plus User's Guide and Reference

Oracle Database 23ai supports binding with native VECTOR types for all Oracle clients.
Applications that use earlier Oracle Client 23ai libraries can connect to Oracle Database 23ai
in the following ways:

• Using the TO_VECTOR() SQL function to insert vector data, as shown in the following
example:

INSERT INTO vecTab VALUES(TO_VECTOR('[1.1, 2.9, 3.14]'));

• Using the FROM_VECTOR() SQL function to fetch vector data, as shown in the following
example:

SELECT FROM_VECTOR(dataVec) FROM vecTab;
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11
Vector Diagnostics

AI Vector Search includes several views, statistics, and parameters that can be used to help
understand how vector search is performing for your workload.

• Oracle AI Vector Search Views
These are a set of data dictionary views related to Oracle AI Vector Search.

• Oracle AI Vector Search Statistics
These are a set of statistics related to Oracle AI Vector Search.

• Oracle AI Vector Search Parameters
This is a set of parameters related to Oracle AI Vector Search.

Oracle AI Vector Search Views
These are a set of data dictionary views related to Oracle AI Vector Search.

• Text Processing Views
These views display language-specific data (abbreviation token details) and vocabulary
data related to the Oracle AI Vector Search SQL and PL/SQL utilities.

• Vector Memory Pool Views
Review the various vector memory pool views.

• Vector Index and Hybrid Vector Index Views
These views allow you to query tables related to vector indexes and hybrid vector indexes.

Text Processing Views
These views display language-specific data (abbreviation token details) and vocabulary data
related to the Oracle AI Vector Search SQL and PL/SQL utilities.

• ALL_VECTOR_ABBREV_TOKENS
The ALL_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all
supported languages.

• ALL_VECTOR_LANG
The ALL_VECTOR_LANG view displays a list of all supported languages, distributed by
default.

• DBA_VECTOR_HITCOUNTS
The DBA_VECTOR_HITCOUNTS view tracks calls to third parties for observability.

• USER_VECTOR_ABBREV_TOKENS
The USER_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all
languages loaded by the current user.

• USER_VECTOR_HITCOUNTS
The USER_VECTOR_HITCOUNTS view tracks calls to third parties for observability for the
current user.

• USER_VECTOR_LANG
The USER_VECTOR_LANG view displays all languages loaded by the current user.
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• USER_VECTOR_VOCAB
The USER_VECTOR_VOCAB view displays all custom token vocabularies created by the
current user.

• USER_VECTOR_VOCAB_TOKENS
The USER_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies
created by the current user.

• ALL_VECTOR_VOCAB
The ALL_VECTOR_VOCAB view displays all custom token vocabularies.

• ALL_VECTOR_VOCAB_TOKENS
The ALL_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies.

Related Topics

• Configure Chunking Parameters
Oracle AI Vector Search provides many parameters for chunking text data, such as SPLIT
[BY], OVERLAP, or NORMALIZE. In these examples, you can see how to configure these
parameters to define your own chunking specifications and strategies, so that you can
create meaningful chunks.

ALL_VECTOR_ABBREV_TOKENS
The ALL_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all supported
languages.

Column Name Data Type Description

ABBREV_OWNER VARCHAR2(128) Owner of the abbreviation token (for
example, PUBLIC)

ABBREV_LANGUAGE NUMBER Language ID for the language (for
example, 1 for American)

ABBREV_TOKEN NVARCHAR2(255) List of all abbreviation tokens
corresponding to each language

ALL_VECTOR_LANG
The ALL_VECTOR_LANG view displays a list of all supported languages, distributed by default.

Column Name Data Type Description

LANG_OWNER VARCHAR2(128) Owner of the language (for example,
PUBLIC)

LANG_LANG NUMBER Language ID for the language (for
example, 1 for American)

LANG_NAME VARCHAR2(128) Name of the language (for example,
AMERICAN)
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DBA_VECTOR_HITCOUNTS
The DBA_VECTOR_HITCOUNTS view tracks calls to third parties for observability.

Column Name Data Type Description

USER_ID NUMBER ID of the current user

CREDENTIAL_ID NUMBER Credential ID for the third party call used
by the user

PROVIDER_NAME VARCHAR2(128) Name of the third-party provider

METHOD_NAME VARCHAR2(128) Name of the method calling the third-
party API(s) (such as
UTL_TO_SUMMARY,
UTL_TO_EMBEDDING, and so on)

TOTAL_COUNT NUMBER Total number of calls made to the third-
party provider

LAST_HIT TIMESTAMP(6) Time of the last call to the third-party
provider

USER_VECTOR_ABBREV_TOKENS
The USER_VECTOR_ABBREV_TOKENS view displays a list of abbreviation tokens from all languages
loaded by the current user.

Column Name Data Type Description

ABBREV_LANGUAGE NUMBER Language ID for the language (for
example, 1 for American)

ABBREV_TOKEN NVARCHAR2(255) List of all abbreviation tokens
corresponding to each language

USER_VECTOR_HITCOUNTS
The USER_VECTOR_HITCOUNTS view tracks calls to third parties for observability for the current
user.

Column Name Data Type Description

USER_ID NUMBER ID of the current user

CREDENTIAL_ID NUMBER Credential ID for the third-party call
used by the user

CREDENTIAL_NAME VARCHAR2(128) Credential name for the third-party call
used by the user

PROVIDER_NAME VARCHAR2(128) Name of the third-party provider

METHOD_NAME VARCHAR(128) Name of the method calling the third-
party API(s) (such as
UTL_TO_SUMMARY,
UTL_TO_EMBEDDING, and so on)

TOTAL_COUNT NUMBER Total number of calls made to the third-
party provider.
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Column Name Data Type Description

LAST_HIT TIMESTAMP(6) Time of the last call to the third-party
provider

USER_VECTOR_LANG
The USER_VECTOR_LANG view displays all languages loaded by the current user.

Column Name Data Type Description

LANG_LANG NUMBER Language ID for the language (for
example, 1 for American)

LANG_NAME VARCHAR2(128) Name of the language (for example,
AMERICAN)

USER_VECTOR_VOCAB
The USER_VECTOR_VOCAB view displays all custom token vocabularies created by the current
user.

Column Name Data Type Description

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

FORMAT VARCHAR2(4) Format of the vocabulary, such as XLM,
BERT, or GPT2

CASED VARCHAR2(7) Character-casing of the vocabulary, that
is, vocabulary to be treated as cased or
uncased

USER_VECTOR_VOCAB_TOKENS
The USER_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies
created by the current user.

Column Name Data Type Description

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

VOCAB_TOKEN VARCHAR2(255) Tokens contained in the vocabulary

ALL_VECTOR_VOCAB
The ALL_VECTOR_VOCAB view displays all custom token vocabularies.

Column Name Data Type Description

VOCAB_OWNER VARCHAR2(128) Owner of the vocabulary (for example,
SYS)
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Column Name Data Type Description

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

FORMAT VARCHAR2(4) Format of the vocabulary, such as XLM,
BERT, or GPT2

CASED VARCHAR2(7) Character-casing of the vocabulary, that
is, vocabulary to be treated as cased or
uncased

ALL_VECTOR_VOCAB_TOKENS
The ALL_VECTOR_VOCAB_TOKENS view displays tokens from all custom token vocabularies.

Column Name Data Type Description

VOCAB_OWNER VARCHAR2(128) Owner of the vocabulary (for example,
SYS)

VOCAB_NAME VARCHAR2(128) User-specified name of the vocabulary
(for example, DOC_VOCAB)

VOCAB_TOKEN VARCHAR2(255) Tokens contained in the vocabulary

Vector Memory Pool Views
Review the various vector memory pool views.

• V$VECTOR_MEMORY_POOL
This view contains information about the space allocation for Vector Memory.

V$VECTOR_MEMORY_POOL
This view contains information about the space allocation for Vector Memory.

The Vector Memory Pool area is used primarily to maintain in-memory vector indexes or
metadata useful for vector-related operations. The Vector Memory Pool is subdivided into two
pools: a 1MB pool used to store In-Memory Neighbor Graph Index allocations; and a 64K pool
used to store metadata. The amount of available memory in each pool is visible in the
V$VECTOR_MEMORY_POOL view. The relative size of the two pools is determined by internal
heuristics. The size of the Vector Memory Pool is controlled by the vector_memory_size
parameter. Area in the Vector Memory Pool is also allocated to accelerate Neighbor Partition
Index access by storing centroid vectors.

Column Name Data Type Description

POOL VARCHAR2(26) Name of the pools in the Vector
Memory Pool (64K or 1MB)

ALLOC_BYTES NUMBER Total amount of memory
allocated to this pool

USED_BYTES NUMBER Amount of memory currently
used in this pool
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Column Name Data Type Description

POPULATE_STATUS VARCHAR2(26) Status of the vector memory store
—whether it is being populated, is
done populating etc.

CON_ID NUMBER The ID of the container to which
the data pertains. Possible values
are:

• 0: This value is used for rows
containing data that pertain
to the entire multitenant
container database (CDB).
This value is also used for
rows in non-CDBs.

• 1: This value is used for rows
containing data that pertain
to only the root.

• n: Where n is the applicable
container ID for the rows
containing data.

Example

select CON_ID, POOL, ALLOC_BYTES/1024/1024 as ALLOC_BYTES_MB,
USED_BYTES/1024/1024 as USED_BYTES_MB
from V$VECTOR_MEMORY_POOL order by 1,2;

    CON_ID POOL             ALLOC_BYTES_MB USED_BYTES_MB
---------- ---------------- -------------- -------------
         1 1MB POOL                    319             0
         1 64KB POOL                   144             0
         1 IM POOL METADATA             32            32
         2 1MB POOL                    320             0
         2 64KB POOL                   144             0
         2 IM POOL METADATA             16            16
         3 1MB POOL                    320             0
         3 64KB POOL                   144             0
         3 IM POOL METADATA             16            16
         4 1MB POOL                    320             0
         4 64KB POOL                   144             0
         4 IM POOL METADATA             16            16

12 rows selected.

SQL>

Vector Index and Hybrid Vector Index Views
These views allow you to query tables related to vector indexes and hybrid vector indexes.

• VECSYS.VECTOR$INDEX
This dictionary table contains detailed information about vector indexes.
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• V$VECTOR_INDEX
This fixed view provides diagnostic information about vector indexes and is available with
Autonomous Database Serverless (ADB-S).

• V$VECTOR_GRAPH_INDEX
This fixed view provides diagnostic information about In-Memory Neighbor Graph vector
indexes and is available with Autonomous Database Serverless (ADB-S).

• V$VECTOR_PARTITIONS_INDEX
This fixed view provides diagnostic information about Inverted File Flat indexes and is
available with Autonomous Database Serverless (ADB-S).

• VECSYS.VECTOR$INDEX$CHECKPOINTS
This dictionary table provides detailed information about Hierarchical Navigable Small
World (HNSW) full checkpoints at the database level.

• <index name>$VECTORS
This dictionary table provides information about the vector index part of a hybrid vector
index, showing the contents of the $VR table with row ids, chunks, and embeddings.

VECSYS.VECTOR$INDEX
This dictionary table contains detailed information about vector indexes.

Column Name Data Type Description

IDX_OBJN NUMBER Object number of the vector index

IDX_OBJD NUMBER ID of the vector index object. This
ID can be used to rebuild the
vector index.

IDX_OWNER# NUMBER Owner ID of the vector index.
Refer user$ entry

IDX_NAME VARCHAR2(128) Name of the vector index.

IDX_BASE_TABLE_OBJN NUMBER Base table object number

IDX_PARAMS JSON Vector index creation parameters
such as vector column indexed,
index distance, vector dimension
datatype, number of dimensions,
efConstruction, and number of
neighbors for in-memory neighbor
graph HNSW index or the number
of centroids for Inverted File Flat
vector indexes.

IDX_AUXILIARY_TABLES JSON Names and object IDs of auxiliary
tables used to support rowid-to-
vertexid conversion information or
names of a centroid table and its
associated partitions table for
Inverted File Flat vector indexes.

Example

SQL> SELECT JSON_SERIALIZE(IDX_PARAMS returning varchar2 PRETTY)
  2* FROM VECSYS.VECTOR$INDEX where IDX_NAME = 'DOCS_HNSW_IDX';

JSON_SERIALIZE(IDX_PARAMSRETURNINGVARCHAR2PRETTY)
{
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  "type" : "HNSW",
  "num_neighbors" : 32,
  "efConstruction" : 300,
  "upcast_dtype" : 1,
  "distance" : "COSINE",
  "accuracy" : 95,
  "vector_type" : "FLOAT32",
  "vector_dimension" : 384,
  "degree_of_parallelism" : 1,
  "indexed_col" : "EMBED_VECTOR"
}
SQL>
SQL> select * from vecsys.vector$index;

IDX_OBJN IDX_OBJD  IDX_OWNER# IDX_NAME       IDX_BASE_TABLE_OBJN  
IDX_PARAMS                             
IDX_AUXILIARY_TABLES                                                          
                          IDX_SPARE1 IDX_SPARE2
-------- --------  ---------- -------------- -------------------  
--------------------------             
--------------------                                                          
                          ----------  ---------
   74051     143               DOCS_HNSW_IDX              73497   
{"type":"HNSW",                        {"rowid_vid_map_objn":74052,
                                                                   
"num_neighbors":32,                    
"shared_journal_transaction_commits_objn":74054,
                                                                   
"efConstruction":300,                  
"shared_journal_change_log_objn":74057,                 
                                                                   
"upcast_dtype":1,                      
"rowid_vid_map_name":"VECTOR$DOCS_HNSW_IDX$HNSW_ROWID_VID_MAP",               
                                                                   
"distance":"COSINE",                   
"shared_journal_transaction_commits_name":"VECTOR$DOCS_HNSW_IDX$HNSW_SHARED_JO
URNAL_TRANSACTION_COMMITS",
                                                                   
"accuracy":95,                         
"shared_journal_change_log_name":"VECTOR$DOCS_HNSW_IDX$HNSW_SHARED_JOURNAL_CHA
NGE_LOG"}
                                                                   
"vector_type":"FLOAT32",
                                                                   
"vector_dimension":384,
                                                                   
"degree_of_parallelism":1,
                                                                   
"indexed_col":"EMBED_VECTOR"} 
       
   74072      143             GALAXIES_HNSW_IDX           74069   
{"type":"HNSW",                         {"rowid_vid_map_objn":74073,
                                                                    
"num_neighbors":32,                     
"shared_journal_transaction_commits_objn":74075,     
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"efConstruction":300,                   
"shared_journal_change_log_objn":74078,
                                                                    
"upcast_dtype":0,                       
"rowid_vid_map_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_ROWID_VID_MAP",
                                                                    
"distance":"COSINE",                    
"shared_journal_transaction_commits_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_SHARE
D_JOURNAL_TRANSACTION_COMMITS",
                                                                    
"accuracy":95,                          
"shared_journal_change_log_name":"VECTOR$GALAXIES_HNSW_IDX$HNSW_SHARED_JOURNAL
_CHANGE_LOG"}
                                                                    
"vector_type":"INT8",
                                                                    
"vector_dimension":5,
                                                                    
"degree_of_parallelism":1,
                                                                    
"indexed_col":"EMBEDDING"}
         

SQL>

V$VECTOR_INDEX
This fixed view provides diagnostic information about vector indexes and is available with
Autonomous Database Serverless (ADB-S).

Column Name Data Type Description

OWNER VARCHAR(129) User name of the vector index
owner

INDEX_NAME VARCHAR(129) Name of the vector index

PARTITION_NAME VARCHAR(129) Object partition name (set to
NULL for non-partitioned objects)

INDEX_ORGANIZATION VARCHAR(129) The vector index organization.
The value can be one of the
following:
• NEIGHBOR PARTITIONS
• INMEMORY NEIGHBOR

GRAPH
INDEX_OBJN NUMBER Index object number

ALLOCATED_BYTES NUMBER Total amount of memory
allocated to this vector index, in
bytes.

When the vector index is an IVF
index, the value is 0.

USED_BYTES NUMBER Total amount of memory currently
used by the vector index, in bytes.

When the vector index is an IVF
index, the value is 0.
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Column Name Data Type Description

NUM_VECTORS NUMBER The number of vectors currently
indexed in the main-memory
storage of the index as of the
latest snapshot

NUM_REPOP NUMBER Number of times this index has
been repopulated

INDEX_USED_COUNT NUMBER Number of times this vector index
has been used by queries

DISTANCE_TYPE VARCHAR2(129) Possible distance values:
• EUCLIDEAN
• EUCLIDEAN_SQUARED
• COSINE
• DOT
• MANHATTAN
• HAMMING

INDEX_DIMENSIONS NUMBER Number of dimensions of the
indexed vector

INDEX_DIM_TYPE VARCHAR2(129) Type of the dimensions of the
index vector.

Possible values:
• FLOAT16
• FLOAT32
• FLOAT64
• INT8

DEFAULT_ACCURACY NUMBER The accuracy to achieve when
performing approximate search
on this vector index if a target
query accuracy is not provided

CON_ID NUMBER The ID of the container to which
the data pertains. Possible values
include the following:
• 0: This value is used for rows

containing data that pertain
to the entire multitenant
container database (CDB).
This value is also used for
rows in non-CDBs.

• 1: This value is used for rows
containing data that pertain
to only the root.

• n: Where n is the applicable
container ID for the rows
containing data.
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V$VECTOR_GRAPH_INDEX
This fixed view provides diagnostic information about In-Memory Neighbor Graph vector
indexes and is available with Autonomous Database Serverless (ADB-S).

Column Name Data Type Description

OWNER VARCHAR2(129) User name of the vector graph
index owner

INDEX_NAME VARCHAR2(129) Name of the vector graph index

PARTITION_NAME VARCHAR2(129) Object partition name (set to
NULL for non-partitioned objects)

INDEX_OBJN NUMBER Index object number

ANCHOR_ADDRESS RAW(8) The address of the anchor
structure of the in-memory
neighbor graph index in the
vector pool

INDEX_GRAPH_TYPE VARCHAR2(129) Type of the constructed graph of
this index.

Possible values:
• HNSW: Hierarchical Navigable

Small Worlds. Currently only
this graph is supported.

NUM_LAYERS NUMBER Number of layers in the
constructed graph

NUM_VECTORS NUMBER Number of indexed vectors in the
vector graph index

SPARSE_LAYER_VECTORS NUMBER The total number of vectors in the
sparse layers. Note that a sparse
layer is defined as any layer
above the bottom most layer.

NUM_NEIGHBORS NUMBER Maximum number of neighbors a
vector can have in the sparse
layers

EFCONSTRUCTION NUMBER Maximum number of closest
vector candidates considered at
each step of the search during
insertion

TOTAL_EDGES NUMBER Number of total edges in the
constructed graph as of the latest
snapshot

REF_COUNT NUMBER Number used to track readers of
the inmemory neighbor graph
index. The inmemory neighbor
graph index can only be dropped
once the refcount is 0.

QUERY_DIST_COUNT NUMBER Number of distance computations
done as part of queries that used
the inmemory neighbor graph
index
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Column Name Data Type Description

CREATION_DIST_COUNT NUMBER Number of distance computations
done as part of the inmemory
neighbor graph index creation

PRUNED_NEIGHBORS NUMBER Number of neighbors pruned out
during the neighbor selection
phase of the inmemory neighbor
graph index creation

NUM_SNAPSHOTS NUMBER Number of snapshots currently
tracked for the inmemory
neighbor graph index

MAX_SNAPSHOT NUMBER The total number of snapshots
created so far for the inmemory
graph index

ALLOCATED_BYTES NUMBER Total amount of memory
allocated to this vector graph
index, in bytes

USED_BYTES NUMBER Total amount of memory currently
used by the vector graph index, in
bytes

CON_ID NUMBER The ID of the container to which
the data pertains. Possible values
include the following:

• 0: This value is used for rows
containing data that pertain
to the entire multitenant
container database (CDB).
This value is also used for
rows in non-CDBs.

• 1: This value is used for rows
containing data that pertain
to only the root

• n: Where n is the applicable
container ID for the rows
containing data

V$VECTOR_PARTITIONS_INDEX
This fixed view provides diagnostic information about Inverted File Flat indexes and is available
with Autonomous Database Serverless (ADB-S).

Column Name Data Type Description

OWNER VARCHAR2(129) User name of the vector partition
index owner

INDEX_NAME VARCHAR2(129) Name of the vector partition index

PARTITION_NAME VARCHAR2(129) Object partition name (set to
NULL for non-partitioned objects)

INDEX_OBJN NUMBER Index object number
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Column Name Data Type Description

CENTROIDS_ANCHOR_ADDRESS RAW(8) The address of the anchor
structure hosting the centroids for
the in-memory neighbor partitions
index in the vector pool.
CENTROIDS_ANCHOR_ADDRESS is
only enabled if in-memory
centroids are enabled on the
index. Set to 0 if in-memory
centroids are unavailable for the
index.

INDEX_PARTITIONS_TYPE VARCHAR2(129) The partition type of this neighbor
partitions vector index.

Possible values include:
• IVF: Inverted File Index

NUM_NEIGHBOR_PARTITIONS NUMBER Number of neighbor partitions
created for the neighbor partitions
vector index

NUM_VECTORS NUMBER Number of indexed vectors in this
vector index

MIN_PARTITION_VECTORS_COUN
T

NUMBER Number of vectors in the smallest
neighbor partition

MAX_PARTITION_VECTORS_COUN
T

NUMBER Number of vectors in the largest
neighbor partition

INDEX_USED_COUNT NUMBER Number of times this vector
partition index has been used by
queries

AVG_PARTITIONS_SCANNED NUMBER Average number of neighbor
partitions scanned in order to
answer queries. This is an
average over the NEIGHBOR
PROBES query parameter
supported for an Inverted File
neighbor partitions index

CON_ID NUMBER The ID of the container to which
the data pertains. Possible values
include the following:

• 0: This value is used for rows
containing data that pertain
to the entire multitenant
container database (CDB).
This value is also used for
rows in non-CDBs.

• 1: This value is used for rows
containing data that pertain
to only the root

• n: Where n is the applicable
container ID for the rows
containing data
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VECSYS.VECTOR$INDEX$CHECKPOINTS
This dictionary table provides detailed information about Hierarchical Navigable Small World
(HNSW) full checkpoints at the database level.

Column Name Data Type Description

INDEX_OBJN NUMBER The index object number to
uniquely identify the HNSW
index.

INDEX_OWNER_ID NUMBER The owner id for the vector index.

CHECKPOINT_ID NUMBER A monotonically increasing ID
tracking various checkpoints for
this HNSW index.

CHECKPOINT_SCN NUMBER The SCN as of which the HNSW
checkpoint is taken.

CHECKPOINT_TYPE NUMBER Full Checkpoint is the only
checkpoint type supported.

VERSION_NUMBER NUMBER The checkpoint format may
change in between releases.
Thus, you can use a version
number to decide whether to
reload the HNSW index using a
particular checkpoint.

TABLESPACE_NUMBER NUMBER The tablespace number. You can
view a tablespace number to
decide whether to store full
checkpoints of your HNSW
graphs in the same tablespace or
in a different one.

Related Topics

• Understand HNSW Index Population Mechanisms in Oracle RAC or Single Instance
Learn how Hierarchical Navigable Small World (HNSW) indexes are populated during
index creation, index repopulation, or instance startup in an Oracle Real Application
Clusters (Oracle RAC) or a non-RAC environment.

<index name>$VECTORS
This dictionary table provides information about the vector index part of a hybrid vector index,
showing the contents of the $VR table with row ids, chunks, and embeddings.

Note:

The <index name>$VECTORS view resides in a user's schema. Therefore, if a hybrid
vector index is named IDX, then the view name is IDX$VECTORS.
<index name>$VECTORS view is not supported for Local Hybrid Vector Indexes.
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Column Name Data Type Description

DOC_ROWID ROWID Document table's row ID,
excluding lazy deletes

DOC_CHUNK_ID NUMBER ID for each chunk text

DOC_CHUNK_COUNT NUMBER Number of chunks into which
each document is split

DOC_CHUNK_OFFSET NUMBER Original position of each chunk in
the source document, relative to
the start of document (which has
a position of 1)

DOC_CHUNK_LENGTH NUMBER Character length of each chunk
text

DOC_CHUNK_TEXT VARCHAR2(4000) Human-readable content in each
chunk

DOC_CHUNK_EMBEDDING VECTOR(*, *) Generated vector embedding for
each chunk

Related Topics

• Manage Hybrid Vector Indexes
Learn how to manage a hybrid vector index, which is a single index for searching by
similarity and keywords, to enhance the accuracy of your search results.

Oracle AI Vector Search Statistics
These are a set of statistics related to Oracle AI Vector Search.

• Oracle AI Vector Search Dictionary Statistics
A set of dictionary statistics related to Oracle AI Vector Search.

• Oracle Machine Learning Static Dictionary Views
Lists data dictionary views related to Oracle Machine Learning models.

Oracle AI Vector Search Dictionary Statistics
A set of dictionary statistics related to Oracle AI Vector Search.

• Vector simd dist single calls: The number of vector distance function calls invoked by the
user, where both the inputs are a single vector.

• Vector simd dist point calls: The number of vector distance function calls invoked by the
user, where one input is a single vector, and the other input is an array of vectors.

• Vector simd dist array calls: The number of vector distance function calls invoked by the
user, where both the inputs are an array of vectors.

• Vector simd dist flex calls: The number of vector distance function calls invoked by the
user, where at least one input is with FLEX vector data type (no dimension or storage data
type specified).

• Vector simd dist total rows: The number of rows processed by the vector distance
function.

• Vector simd dist flex rows: The number of rows processed by the vector distance
function with FLEX vector data type.
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• Vector simd topK single calls: The number of topK distance function calls invoked by the
user, where both the inputs are a single vector.

• Vector simd topK point calls: The number of topK distance function calls invoked by the
user, where one input is a single vector and the other input is an array of vectors.

• Vector simd topK array calls: The number of topK distance function calls invoked by the
user, where both the inputs are an array of vectors.

• Vector simd topK flex calls: The number of topK distance function calls invoked by the
user, where at least one input is with FLEX vector data type (no dimension or storage data
type specified).

• Vector simd topK total rows: The number of rows processed by the topK distance
function.

• Vector simd topK flex rows: The number of rows processed by the topK distance
function with FLEX vector data type.

• Vector simd topK selected total rows: The number of distance results returned by the
topK vector distance function.

Note:

This is typically sum(K) for all topK queries.

• Vector simd construction num of total calls: The number of vector construction function
calls invoked by the user.

• Vector simd construction total result rows: The number of vector rows returned by the
vector construction function.

• Vector simd construction num of ASCII calls: The number of vector construction
function calls invoked by the user, where the input encoding is ASCII.

• Vector simd construction num of flex calls: The number of vector construction function
calls invoked by the user, where the output vector is of FLEX vector data type.

• Vector simd construction result rows for flex: The number of vector rows returned by
the vector construction function, where the output vector is of FLEX vector data type.

• Vector simd vector conversion num of total calls: The number of vector conversion
function calls invoked by the user.

• VECTOR NEIGHBOR GRAPH HNSW build HT Element Allocated: The number of hash
table elements allocated for vector indexes having organization Inmemory Neighbor Graph
and type HNSW that were created by a user.

• VECTOR NEIGHBOR GRAPH HNSW build HT Element Freed: The number of hash
table elements freed for vector indexes having organization Inmemory Neighbor Graph
and type HNSW that were created by a user.

• VECTOR NEIGHBOR GRAPH HNSW reload attempted: The number of reload
operations attempted in the background for vector indexes having organization Inmemory
Neighbor Graph and type HNSW.

• VECTOR NEIGHBOR GRAPH HNSW reload successful: The number of reload
operations completed in the background for vector indexes having organization Inmemory
Neighbor Graph and type HNSW.

• VECTOR NEIGHBOR GRAPH HNSW build computed layers: The total number of layers
created in an HNSW index.
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• VECTOR NEIGHBOR GRAPH HNSW build indexed vectors: The total number of vector
indexes in the HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW build computed distances: The total number of
distance computations executed during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build sparse layers computed distances: The
total number of distance computations executed during the HNSW index build phase, in all
the layers, except the bottom one.

• VECTOR NEIGHBOR GRAPH HNSW build dense layer computed distances: The total
number of distance computations executed during the HNSW index phase in the bottom
layer.

• VECTOR NEIGHBOR GRAPH HNSW build prune operation computed distances: The
total number of distance computations that were executed during the pruning operations
required to find the closest neighbors for a vector in the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build pruned neighbor lists: The total number of
neighbors pruned during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build pruned neighbors: The total number of
neighbors pruned during the HNSW index build phase.

• VECTOR NEIGHBOR GRAPH HNSW build created edges: The total number of edges
created in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search executed approximate: The total number
of query searches executed using approximate search in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search executed exhaustive: The total number of
query searches executed using exact search in an HNSW index.

• VECTOR NEIGHBOR GRAPH HNSW search computed distances dense layer: The
total number of distance computations executed in the bottom layer of an HNSW index
during query searches.

• VECTOR NEIGHBOR GRAPH HNSW search computed distances sparse layer: The
total number of distance computations executed in all the layers except the bottom layer of
an HNSW index during query searches.

• VECTOR NEIGHBOR PARTITIONS IVF build HT Element Allocated: The number of
hash table elements allocated for vector indexes having organization Neighbor
Partitions and type IVF that were created by a user.

• VECTOR NEIGHBOR PARTITIONS IVF build HT Element Freed: The number of hash
table elements freed for vector indexes having organization Neighbor Partitions and
type IVF that were created by a user.

• VECTOR NEIGHBOR PARTITIONS IVF background Population Started: The number of
in-memory centroids background population operations started for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF background Population Succeeded: The
number of in-memory centroids background population operations completed for vector
indexes having organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF background Cleanup Started: The number of
in-memory centroids background cleanup operations started for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Population Started: The number of in-
memory centroids cross-instance population operations started for vector indexes having
organization Neighbor Partitions and type IVF.
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• VECTOR NEIGHBOR PARTITIONS IVF XIC Population Succeeded: The number of in-
memory centroids cross-instance population operations completed for vector indexes
having organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Cleanup Started: The number of in-memory
centroids cross-instance cleanup operations started for vector indexes having organization
Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF XIC Cleanup Succeeded: The number of in-
memory centroids cross-instance cleanup operations completed for vector indexes having
organization Neighbor Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF im centroids in scan: The number of times that
in-memory centroids are used in scan for vector indexes having organization Neighbor
Partitions and type IVF.

• VECTOR NEIGHBOR PARTITIONS IVF im centroids in dmls: The number of times that
in-memory centroids are used in the DML that happens on the base table with vector
indexes having organization Neighbor Partitions and type IVF.

Oracle Machine Learning Static Dictionary Views
Lists data dictionary views related to Oracle Machine Learning models.

Query the following views to learn more about the machine learning models:

• ALL_MINING_MODEL_ATTRIBUTES

• ALL_MINING_MODELS

Oracle AI Vector Search Parameters
This is a set of parameters related to Oracle AI Vector Search.

• VECTOR_MEMORY_SIZE

Syntax: VECTOR_MEMORY_SIZE = integer[K | M | G]
The initialization parameter VECTOR_MEMORY_SIZE specifies either the current size of the
Vector Pool (at CDB level) or the maximum Vector Pool usage allowed by a PDB (at PDB
level).

For more information about this parameter, see Size the Vector Pool.

• VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD

Syntax: VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD = [RESTART | OFF] (default RESTART)

The initialization parameter VECTOR_INDEX_NEIGHBOR_GRAPH_RELOAD is used to manage
automatic recreation of HNSW indexes. You can enable or disable both the HNSW
duplication and reload mechanisms in Oracle RAC and non-RAC environments.

For more information about this parameter and the duplication and reload mechanisms,
see Understand HNSW Index Population Mechanisms in Oracle RAC or Single Instance.

• VECTOR_QUERY_CAPTURE

Syntax: VECTOR_QUERY_CAPTURE = [ON | OFF] (default ON)

The initialization parameter VECTOR_QUERY_CAPTURE is used to enable or disable capture of
query vectors.
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For more information about this parameter and about capturing query vectors, see Index
Accuracy Report.

• COMPATIBLE

Syntax: COMPATIBLE = release_number
The initialization parameter enables you to use a new release of Oracle while ensuring the
ability to downgrade the database to an earlier release. To use the VECTOR data type and its
related features, COMPATIBLE must be set to 23.4.0 or higher.

Certain vector features require the COMPATIBLE parameter to be manually updated to a
higher value in order to be available for use. To find requirements for a particular feature,
see the applicable Release Update page at Oracle Database 23ai Release Updates.

For more information about this parameter, see Oracle Database Reference.
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12
Vector Search PL/SQL Packages

The DBMS_VECTOR, DBMS_VECTOR_CHAIN, and DBMS_HYBRID_VECTOR PL/SQL APIs are available to
support Oracle AI Vector Search capabilities.

• DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search,
such as extracting chunks or embeddings from user data, generating text for a given
prompt or an image, creating a vector index, or reporting on index accuracy.

• DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector
Search, such as chunking and embedding data along with text generation and
summarization capabilities. It is more suitable for text processing with similarity search and
hybrid search, using functionality that can be pipelined together for an end-to-end search.

• DBMS_HYBRID_VECTOR
The DBMS_HYBRID_VECTOR package contains a JSON-based query API SEARCH, which lets
you query against hybrid vector indexes.

DBMS_VECTOR
The DBMS_VECTOR package simplifies common operations with Oracle AI Vector Search, such
as extracting chunks or embeddings from user data, generating text for a given prompt or an
image, creating a vector index, or reporting on index accuracy.

This table lists the DBMS_VECTOR subprograms and briefly describes them.

Table 12-1    DBMS_VECTOR Package Subprograms

Subprogram Description

ONNX Model Related Procedures:

These procedures enable you to load an ONNX model into Oracle Database and drop the ONNX model.

LOAD_ONNX_MODEL Loads an ONNX model into the database

LOAD_ONNX_MODEL_CLOUD Loads an ONNX model from object storage into the database

DROP_ONNX_MODEL Procedure Drops the ONNX model

Chainable Utility (UTL) Functions:

These functions are a set of modular and flexible functions within vector utility PL/SQL packages. You
can chain these together to automate end-to-end data transformation and similarity search operations.

UTL_TO_CHUNKS Splits data into smaller pieces or chunks

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS

Converts text or an image to one or more vector embeddings

UTL_TO_GENERATE_TEXT Generates text for a prompt (input string) or an image

Credential Helper Procedures:

These procedures enable you to securely manage authentication credentials in the database. You
require these credentials to enable access to third-party service providers for making REST calls.

CREATE_CREDENTIAL Creates a credential name
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Table 12-1    (Cont.) DBMS_VECTOR Package Subprograms

Subprogram Description

DROP_CREDENTIAL Drops an existing credential name

Data Access Functions:

These functions enable you to retrieve data, create index, and perform simple similarity search
operations.

CREATE_INDEX Creates a vector index

REBUILD_INDEX Rebuilds a vector index

GET_INDEX_STATUS Describes the status of a vector index creation

ENABLE_CHECKPOINT Enables the Checkpoint feature for a vector index user and
index name

DISABLE_CHECKPOINT Disables the Checkpoint feature for a vector index user and
index name

INDEX_VECTOR_MEMORY_ADVISO
R

Determines the vector memory size that is needed for a vector
index

QUERY Performs a similarity search query

RERANK Reorders search results for a more relevant output

Accuracy Reporting Function:

These functions enable you to determine the accuracy of existing search indexes and to capture
accuracy values achieved by approximate searches performed by past workloads.

INDEX_ACCURACY_QUERY Verifies the accuracy of a vector index

INDEX_ACCURACY_REPORT Captures accuracy values achieved by approximate searches

Note:

DBMS_VECTOR is a lightweight package that does not support text processing or
summarization operations. Therefore, the UTL_TO_TEXT and UTL_TO_SUMMARY
chainable utility functions and all the chunker helper procedures are available only in
the advanced DBMS_VECTOR_CHAIN package.

• CREATE_CREDENTIAL
Use the DBMS_VECTOR.CREATE_CREDENTIAL credential helper procedure to create a
credential name for storing user authentication details in Oracle Database.

• CREATE_INDEX
Use the DBMS_VECTOR.CREATE_INDEX procedure to create a vector index.

• DISABLE_CHECKPOINT
Use the DISABLE_CHECKPOINT procedure to disable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name. This
operation purges all older checkpoints for the HNSW index. It also disables the creation of
future checkpoints as part of the HNSW graph refresh.

• DROP_CREDENTIAL
Use the DBMS_VECTOR.DROP_CREDENTIAL credential helper procedure to drop an existing
credential name from the data dictionary.
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• DROP_ONNX_MODEL Procedure
This procedure deletes the specified ONNX model.

• ENABLE_CHECKPOINT
Use the ENABLE_CHECKPOINT procedure to enable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name.

• GET_INDEX_STATUS
Use the GET_INDEX_STATUS procedure to query the status of a vector index creation.

• INDEX_ACCURACY_QUERY
Use the DBMS_VECTOR.INDEX_ACCURACY_QUERY function to verify the accuracy of a vector
index for a given query vector, top-K, and target accuracy.

• INDEX_ACCURACY_REPORT
Use the DBMS_VECTOR.INDEX_ACCURACY_REPORT function to capture from your past
workloads, accuracy values achieved by approximate searches using a particular vector
index for a certain period of time.

• INDEX_VECTOR_MEMORY_ADVISOR
Use the INDEX_VECTOR_MEMORY_ADVISOR procedure to determine the vector memory size
needed for a particular vector index. This helps you evaluate the number of indexes that
can fit for each simulated vector memory size.

• LOAD_ONNX_MODEL
This procedure enables you to load an ONNX model into the Database.

• LOAD_ONNX_MODEL_CLOUD
This procedure enables you to load an ONNX model from object storage into the
Database.

• QUERY
Use the DBMS_VECTOR.QUERY function to perform a similarity search operation which returns
the top-k results as a JSON array.

• REBUILD_INDEX
Use the DBMS_VECTOR.REBUILD_INDEX function to rebuild a vector index.

• RERANK
Use the DBMS_VECTOR.RERANK function to reassess and reorder an initial set of results to
retrieve more relevant search output.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR.UTL_TO_CHUNKS chainable utility function to split a large plain text
document into smaller chunks of text.

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.

• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR.UTL_TO_GENERATE_TEXT chainable utility function to generate a text
response for a given prompt or an image, by accessing third-party text generation models.
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CREATE_CREDENTIAL
Use the DBMS_VECTOR.CREATE_CREDENTIAL credential helper procedure to create a credential
name for storing user authentication details in Oracle Database.

Purpose

To securely manage authentication credentials in the database. You require these credentials
to enable access during REST API calls to your chosen third-party service provider, such as
Cohere, Google AI, Hugging Face, Oracle Cloud Infrastructure (OCI) Generative AI, OpenAI,
or Vertex AI.

A credential name holds authentication parameters, such as user name, password, access
token, private key, or fingerprint.

Note that if you are using Oracle Database as the service provider, then you do not need to
create a credential.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

DBMS_VECTOR.CREATE_CREDENTIAL (
    CREDENTIAL_NAME     IN VARCHAR2,
    PARAMS              IN JSON DEFAULT NULL
);

CREDENTIAL_NAME

Specify a name of the credential that you want to create for holding authentication parameters.

PARAMS

Specify authentication parameters in JSON format, based on your chosen service provider.

Generative AI requires the following authentication parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
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"fingerprint"     : "<fingerprint>" 
}

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following authentication
parameter:

{ "access_token": "<access token>" }

Table 12-2    Parameter Details

Parameter Description

user_ocid Oracle Cloud Identifier (OCID) of the user, as listed on the User Details page in the
OCI console.

tenancy_ocid OCID of your tenancy, as listed on the Tenancy Details page in the OCI console.

compartment_ocid OCID of your compartment, as listed on the Compartments information page in the
OCI console.

private_key OCI private key.

Note: The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END lines),
either as a single line or as multiple lines.

fingerprint Fingerprint of the OCI profile key, as listed on the User Details page under API Keys in
the OCI console.

access_token Access token obtained from your third-party service provider.

Required Privilege

You need the CREATE CREDENTIAL privilege to call this API.

Examples

• For Generative AI:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  
jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222aa1111b
b');
  
jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1111222a
aa111a');
  
jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233abababab
1111222aba11ab');
  jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/+');
  jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1a');
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  dbms_vector.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

• For Cohere:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'A1Aa0abA1AB1a1Abc123ab1A123ab123AbcA12a');
  dbms_vector.create_credential(
    credential_name   => 'COHERE_CRED',
    params            => json(jo.to_string));
end;
/

End-to-end examples:

To run end-to-end example scenarios using this procedure, see Use LLM-Powered APIs to
Generate Summary and Text.

CREATE_INDEX
Use the DBMS_VECTOR.CREATE_INDEX procedure to create a vector index.

Purpose

To create a vector index such as Hierarchical Navigable Small World (HNSW) vector index or
Inverted File Flat (IVF) vector index.

Syntax

DBMS_VECTOR.CREATE_INDEX (
    idx_name                    IN VARCHAR2,
    table_name                  IN VARCHAR2,
    idx_vector_col              IN VARCHAR2,
    idx_include_cols            IN VARCHAR2 DEFAULT NULL,
    idx_partitioning_scheme     IN VARCHAR2 default 'LOCAL',
    idx_organization            IN VARCHAR2,
    idx_distance_metric         IN VARCHAR2 DEFAULT COSINE,
    idx_accuracy                IN NUMBER DEFAULT 90,
    idx_parameters              IN CLOB,
    idx_parallel_creation       IN NUMBER DEFAULT 1
); 

Parameters

Parameter Description

idx_name Name of the index to create.

table_name Table on which to create the index.
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Parameter Description

idx_vector_col Vector column on which to create the index.

idx_include_cols A comma-separated list of column names to be covered by the index.

idx_partitioning_scheme Partitioning scheme for IVF indexes:

• GLOBAL
• LOCAL
IVF indexes support both global and local indexes on partitioned tables.
By default, these indexes are globally partitioned by centroid. You can
choose to create a local IVF index, which provides a one-to-one
relationship between the base table partitions or subpartitions and the
index partitions.

For detailed information on these partitioning schemes, see Inverted File
Flat Vector Indexes Partitioning Schemes.

idx_organization Index organization:

• NEIGHBOR PARTITIONS
• INMEMORY NEIGHBOR GRAPH
For detailed information on these organization types, see Manage the
Different Categories of Vector Indexes.

idx_distance_metric Distance metric or mathematical function used to compute the distance
between vectors:

• COSINE (default)

• MANHATTAN
• HAMMING
• JACCARD
• DOT
• EUCLIDEAN
• L2_SQUARED
• EUCLIDEAN_SQUARED
For detailed information on each of these metrics, see Vector Distance
Functions and Operators.
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Parameter Description

idx_accuracy Target accuracy at which the approximate search should be performed
when running an approximate search query.

As explained in Understand Approximate Similarity Search Using Vector
Indexes, you can specify non-default target accuracy values either by
specifying a percentage value or by specifying internal parameters
values, depending on the index type you are using.

• For an HNSW approximate search:

In the case of an HNSW approximate search, you can specify a
target accuracy percentage value to influence the number of 
candidates considered to probe the search. This is automatically
calculated by the algorithm. A value of 100 will tend to impose a
similar result as an exact search, although the system may still use
the index and will not perform an exact search. The optimizer may
choose to still use an index as it may be faster to do so given the
predicates in the query. Instead of specifying a target accuracy
percentage value, you can specify the EFSEARCH parameter to
impose a certain maximum number of candidates to be considered
while probing the index. The higher that number, the higher the
accuracy.

For detailed information, see Understand Hierarchical Navigable
Small World Indexes.

• For an IVF approximate search:

In the case of an IVF approximate search, you can specify a target
accuracy percentage value to influence the number of partitions
used to probe the search. This is automatically calculated by the
algorithm. A value of 100 will tend to impose an exact search,
although the system may still use the index and will not perform an
exact search. The optimizer may choose to still use an index as it
may be faster to do so given the predicates in the query. Instead of
specifying a target accuracy percentage value, you can specify the
NEIGHBOR PARTITION PROBES parameter to impose a certain
maximum number of partitions to be probed by the search. The
higher that number, the higher the accuracy.

For detailed information, see Understand Inverted File Flat Vector
Indexes.
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Parameter Description

idx_parameters Type of vector index and associated parameters.

Specify the indexing parameters in JSON format:

• For HNSW indexes:

– type: Type of vector index to create, that is, HNSW
– neighbors: Maximum number of connections permitted per

vector in the HNSW graph
– efConstruction: Maximum number of closest vector

candidates considered at each step of the search during
insertion

For example:

{
    "type"           : "HNSW", 
    "neighbors"      : 3, 
    "efConstruction" : 4
}

For detailed information on these parameters, see Hierarchical
Navigable Small World Index Syntax and Parameters.

• For IVF indexes:

– type: Type of vector index to create, that is, IVF
– partitions: Neighbor partition or cluster in which you want to

divide your vector space
For example:

{
    "type"       : "IVF",
    "partitions" : 5
}

For detailed information on these parameters, see Inverted File Flat
Index Syntax and Parameters.

idx_parallel_creation Number of parallel threads used for index construction.

Examples

• Specify neighbors and efConstruction for HNSW indexes:

dbms_vector.create_index(
    'v_hnsw_01', 
    'vpt01', 
    'EMBEDDING', 
     NULL, 
     NULL, 
    'INMEMORY NEIGHBOR GRAPH', 
    'EUCLIDEAN', 
     95, 
    '{"type" : "HNSW", "neighbors" : 3, "efConstruction" : 4}');
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• Specify the number of partitions for IVF indexes:

dbms_vector.create_index(
    'V_IVF_01', 
    'vpt01', 
    'EMBEDDING', 
     NULL,
     NULL, 
    'NEIGHBOR PARTITIONS', 
    'EUCLIDEAN', 
     95, 
    '{"type" : "IVF", "partitions" : 5}');

DISABLE_CHECKPOINT
Use the DISABLE_CHECKPOINT procedure to disable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name. This
operation purges all older checkpoints for the HNSW index. It also disables the creation of
future checkpoints as part of the HNSW graph refresh.

Syntax

DBMS_VECTOR.DISABLE_CHECKPOINT('INDEX_USER',['INDEX_NAME']);

INDEX_USER

Specify the user name of the HNSW vector index owner.

INDEX_NAME

Specify the name of the HNSW vector index for which you want to disable the Checkpoint
feature.

The INDEX_NAME clause is optional. If you do not specify the index name, then this procedure
disables the Checkpoint feature for all HNSW vector indexes under the given user.

Examples

• Using both the index name and index user:

DBMS_VECTOR.DISABLE_CHECKPOINT('VECTOR_USER','VIDX1');

• Using only the index user:

DBMS_VECTOR.DISABLE_CHECKPOINT('VECTOR_USER');

Related Topics

• Oracle Database AI Vector Search User's Guide

• ENABLE_CHECKPOINT
Use the ENABLE_CHECKPOINT procedure to enable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name.
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DROP_CREDENTIAL
Use the DBMS_VECTOR.DROP_CREDENTIAL credential helper procedure to drop an existing
credential name from the data dictionary.

Syntax

DBMS_VECTOR.DROP_CREDENTIAL (
    CREDENTIAL_NAME      IN VARCHAR2
);

CREDENTIAL_NAME

Specify the credential name that you want to drop.

Examples

• For Generative AI:

exec dbms_vector.drop_credential('OCI_CRED');

• For Cohere:

exec dbms_vector.drop_credential('COHERE_CRED');

DROP_ONNX_MODEL Procedure
This procedure deletes the specified ONNX model.

Syntax

DBMS_VECTOR.DROP_ONNX_MODEL (model_name IN VARCHAR2,
                                  force      IN BOOLEAN DEFAULT FALSE);

Parameters

Table 12-3    DROP_ONNX_MODEL Procedure Parameters

Parameter Description

model_name Name of the machine learning ONNX model in the form
[schema_name.]model_name. If you do not specify a schema, then your own schema
is used.

force Forces the machine learning ONNX model to be dropped even if it is invalid. An ONNX
model may be invalid if a serious system error interrupted the model build process.

Usage Note

To drop an ONNX model, you must be the owner or you must have the DB_DEVELOPER_ROLE.

Example

You can use the following command to delete a valid ONNX model named doc_model that
exists in your schema.
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BEGIN
  DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model');
END;
/

ENABLE_CHECKPOINT
Use the ENABLE_CHECKPOINT procedure to enable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name.

Note:

• This procedure only allows the index to create checkpoints. The checkpoint is
created as part of the next HNSW graph refresh.

• By default, HNSW checkpointing is enabled. If required, you can disable it using
the DBMS_VECTOR.DISABLE_CHECKPOINT procedure.

Syntax

DBMS_VECTOR.ENABLE_CHECKPOINT('INDEX_USER',['INDEX_NAME']);

INDEX_USER

Specify the user name of the HNSW vector index owner.

INDEX_NAME

Specify the name of the HNSW vector index for which you want to enable the Checkpoint
feature.

The INDEX_NAME clause is optional. If you do not specify the index name, then this procedure
enables the Checkpoint feature for all HNSW vector indexes under the given user.

Examples

• Using both the index name and index user:

DBMS_VECTOR.ENABLE_CHECKPOINT('VECTOR_USER','VIDX1');

• Using only the index user:

DBMS_VECTOR.ENABLE_CHECKPOINT('VECTOR_USER');

Related Topics

• Oracle Database AI Vector Search User's Guide

• DISABLE_CHECKPOINT
Use the DISABLE_CHECKPOINT procedure to disable the Checkpoint feature for a given
Hierarchical Navigable Small World (HNSW) index user and HNSW index name. This
operation purges all older checkpoints for the HNSW index. It also disables the creation of
future checkpoints as part of the HNSW graph refresh.
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GET_INDEX_STATUS
Use the GET_INDEX_STATUS procedure to query the status of a vector index creation.

Syntax

DBMS_VECTOR.GET_INDEX_STATUS ('USER_NAME','INDEX_NAME');

USER_NAME

Specify the user name of the vector index owner.

INDEX_NAME

Specify the name of the vector index. You can query the index creation status for both
Hierarchical Navigable Small World (HNSW) indexes and Inverted File Flat (IVF) indexes.

Usage Notes

• You can use the GET_INDEX_STATUS procedure only during a vector index creation.

• The Percentage value is shown in the output only for Hierarchical Navigable Small World
(HNSW) indexes (and not for Inverted File Flat (IVF) indexes).

• Along with the DB_DEVELOPER_ROLE privilege, you must have read access to the
VECSYS.VECTOR$INDEX$BUILD$ table.

• You can use the following query to view all auxiliary tables:

select IDX_AUXILIARY_TABLES from vecsys.vector$index;

– For HNSW indexes:

rowid_vid_map stores the mapping between a row ID and vector ID.
shared_journal_change_log stores the DML changes that are yet to be incorporated
into an HNSW graph.

– For IVF indexes:

centroids stores the location for each centroid. centroid_partitions stores the best
centroid for each vector.

• The possible values of Stage for HNSW vector indexes are:

Value Description

HNSW Index Initialization Initialization phase for the HNSW vector index creation

HNSW Index Auxiliary Tables Creation Creation of the internal auxiliary tables for the HNSW
Neighbor Graph vector index

HNSW Index Graph Allocation Allocation of memory from the vector memory pool for the
HNSW graph

HNSW Index Loading Vectors Loading of the base table vectors into the vector pool
memory

HNSW Index Graph Construction Creation of the multi-layered HNSW graph with the previously
loaded vectors

HNSW Index Creation Completed HNSW vector index creation finished
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• The possible values of Stage for IVF vector indexes are:

Value Description

IVF Index Initialization Initialization phase for the IVF vector index creation

IVF Index Centroids Creation The K-means clustering phase that computes the cluster
centroids on a sample of base table vectors

IVF Index Centroid Partitions Creation Centroids assignment phase for the base table vectors

IVF Index Creation Completed IVF vector index creation completed

Example

exec DBMS_VECTOR.GET_INDEX_STATUS('VECTOR_USER','VIDX_HNSW');

Index objn: 74745 
Stage: HNSW Index Loading Vectors 
Percentage: 80%

INDEX_ACCURACY_QUERY
Use the DBMS_VECTOR.INDEX_ACCURACY_QUERY function to verify the accuracy of a vector index
for a given query vector, top-K, and target accuracy.

Syntax

DBMS_VECTOR.INDEX_ACCURACY_QUERY (
    OWNER_NAME         IN VARCHAR2,
    INDEX_NAME         IN VARCHAR2,
    QV                 IN VECTOR,
    TOP_K              IN NUMBER,
    TARGET_ACCURACY    IN NUMBER
) return VARCHAR2;

DBMS_VECTOR.INDEX_ACCURACY_QUERY (
    OWNER_NAME         IN VARCHAR2, 
    INDEX_NAME         IN VARCHAR2,
    QV                 IN VECTOR,
    TOP_K              IN NUMBER,
    QUERY_PARAM        IN JSON
) return VARCHAR2;

Parameters

Table 12-4    INDEX_ACCURACY_QUERY (IN) Parameters of DBMS_VECTOR

Parameter Description

owner_name The name of the vector index owner.

index_name The name of the vector index.

qv Specifies the query vector.

top_k The top_k value for accuracy computation.
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Table 12-4    (Cont.) INDEX_ACCURACY_QUERY (IN) Parameters of DBMS_VECTOR

Parameter Description

target_accuracy The target accuracy value for the vector index.

For information about determining the accuracy of your vector indexes, see Index Accuracy
Report in Oracle Database AI Vector Search User's Guide.

INDEX_ACCURACY_REPORT
Use the DBMS_VECTOR.INDEX_ACCURACY_REPORT function to capture from your past workloads,
accuracy values achieved by approximate searches using a particular vector index for a certain
period of time.

Syntax

DBMS_VECTOR.INDEX_ACCURACY_REPORT (
    OWNER_NAME         IN VARCHAR2,
    INDEX_NAME         IN VARCHAR2,
    START_TIME         IN TIMESTAMP WITH TIME ZONE,
    END_TIME           IN TIMESTAMP WITH TIME ZONE
) return NUMBER;

Parameters

Table 12-5    INDEX_ACCURACY_REPORT (IN) Parameters of DBMS_VECTOR

Parameter Description

owner_name The name of the vector index owner.

index_name The name of the vector index.

start_time Specifies from what time to capture query vectors to consider
for the accuracy computation. A NULL start_time uses
query vectors captured in the last 24 hours.

end_time Specifies an end point up until which query vectors are
considered for accuracy computation. A NULL end_time
uses query vectors captured from start_time until the
current time.

For information about determining the accuracy of your vector indexes, see Index Accuracy
Report in Oracle Database AI Vector Search User's Guide.
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INDEX_VECTOR_MEMORY_ADVISOR
Use the INDEX_VECTOR_MEMORY_ADVISOR procedure to determine the vector memory size
needed for a particular vector index. This helps you evaluate the number of indexes that can fit
for each simulated vector memory size.

Syntax

• Using the number and type of vector dimensions that you want to store in your vector
index.

DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    INDEX_TYPE        IN    VARCHAR2, 
    NUM_VECTORS       IN    NUMBER, 
    DIM_COUNT         IN    NUMBER, 
    DIM_TYPE          IN    VARCHAR2, 
    PARAMETER_JSON    IN    CLOB, 
    RESPONSE_JSON     OUT   CLOB);

• Using the table and vector column on which you want to create your vector index:

DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
    TABLE_OWNER        IN    VARCHAR2, 
    TABLE_NAME         IN    VARCHAR2, 
    COLUMN_NAME        IN    VARCHAR2, 
    INDEX_TYPE         IN    VARCHAR2, 
    PARAMETER_JSON     IN    CLOB, 
    RESPONSE_JSON      OUT   CLOB);

Table 12-6    Syntax Details: INDEX_VECTOR_MEMORY_ADVISOR

Parameter Description

INDEX_TYPE Type of vector index:

• IVF for Inverted File Flat (IVF) vector indexes

• HNSW for Hierarchical Navigable Small World (HNSW) vector
indexes

NUM_VECTORS Number of vectors that you plan to create the vector index with.

DIM_COUNT Number of dimensions of a vector as a NUMBER.

DIM_TYPE Type of dimensions of a vector. Possible values are:

• FLOAT16
• FLOAT32
• FLOAT64
• INT8

TABLE_OWNER Owner name of the table on which to create the vector index.

TABLE_NAME Table name on which to create the vector index.

COLUMN_NAME Name of the vector column on which to create the vector index.
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Table 12-6    (Cont.) Syntax Details: INDEX_VECTOR_MEMORY_ADVISOR

Parameter Description

PARAMETER_JSON Input parameter in JSON format. You can specify only one of the
following form:

• PARAMTER_JSON=>{"accuracy":value}
• INDEX_TYPE=>IVF,

parameter_json=>{"neighbor_partitions":value}
• INDEX_TYPE=>HNSW,

parameter_json=>{"neighbors":value}
Note: You cannot specify values for accuracy along with
neighbor_partitions or neighbors.

RESPONSE_JSON JSON-formatted response string.

Examples

• Using neighbors in the parameters list:

SET SERVEROUTPUT ON;
DECLARE
    response_json CLOB;
BEGIN
    DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
        INDEX_TYPE=>'HNSW', 
        NUM_VECTORS=>10000, 
        DIM_COUNT=>768, 
        DIM_TYPE=>'FLOAT32', 
        PARAMETER_JSON=>'{"neighbors":32}', 
        RESPONSE_JSON=>response_json);
END;
/

Result:

Suggested vector memory pool size: 59918628 Bytes

• Using accuracy in the parameters list:

SET SERVEROUTPUT ON;
DECLARE
    response_json CLOB;
BEGIN
    DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
        INDEX_TYPE=>'HNSW', 
        NUM_VECTORS=>10000, 
        DIM_COUNT=>768, 
        DIM_TYPE=>'FLOAT32', 
        PARAMETER_JSON=>'{"accuracy":90}', 
        RESPONSE_JSON=>response_json); 
END;
/
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Result:

Suggested vector memory pool size: 53926765 Bytes

• Using the table and vector column on which you want to create the vector index:

SET SERVEROUTPUT ON;
DECLARE
    response_json CLOB;
BEGIN
    DBMS_VECTOR.INDEX_VECTOR_MEMORY_ADVISOR(
        'VECTOR_USER', 
        'VECTAB', 
        'DATA_VECTOR', 
        'HNSW', 
        RESPONSE_JSON=>response_json);
END;
/

Example result:

Using default accuracy: 90% 
Suggested vector memory pool size: 76396251 Bytes

Related Topics

• Oracle Database AI Vector Search User's Guide

LOAD_ONNX_MODEL
This procedure enables you to load an ONNX model into the Database.

Syntax

DBMS_VECTOR.LOAD_ONNX_MODEL (
     directory  VARCHAR2,
     file_name   VARCHAR2,
     model_name  VARCHAR2,
     metadata   JSON);

DBMS_VECTOR.LOAD_ONNX_MODEL(
model_name  IN  VARCHAR2,
model_data  IN  BLOB,
metadata    IN  JSON);

Parameters

Table 12-7    LOAD_ONNX_MODEL Procedure Parameters

Parameter Description

directory The directory name of the data dump. For example, DM_DUMP.

file_name A VARCHAR2 type parameter that specifies the name of the ONNX model.
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Table 12-7    (Cont.) LOAD_ONNX_MODEL Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do not
specify a schema, then your own schema is used.

model_data It is a BLOB holding the ONNX representation of the model. The BLOB contains
the identical byte sequence as the one stored in an ONNX file.

metadata A JSON description of the metadata describing the model. The metadata at
minimum must describe the machine learning function supported by the model.
The model's metadata parameters are described in JSON Metadata Parameters
for ONNX Models.

Examples

The following examples illustrates a code snippet of using the DBMS_VECTOR.LOAD_ONNX_MODEL
procedure. The complete step-by-step example is illustrated in Import ONNX Models and
Generate Embeddings.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
    'DM_DUMP', 
    'my_embedding_model.onnx', 
    'doc_model', 
    JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": 
["DATA"]}}'));

DBMS_VECTOR.LOAD_ONNX_MODEL('my_embedding_model.onnx',
                                             :blob_bind_variable, 
                                              JSON('{"function" : 
"embedding", 
                                                     "embeddingOutput" : 
"embedding" ,
                                                      "input":{"input": 
["DATA"]}}'));

For a complete example to illustrate how you can define a BLOB variable and use it in the
LOAD_ONNX_MODEL procedure, you can have the following:

CREATE OR REPLACE MY_LOAD_EMBEDDING_MODEL(embedding_model_name VARCHAR2, 
onnx_blob BLOB) IS 
BEGIN
DBMS_VECTOR.LOAD_ONNX_MODEL(embedding_model_name,
                            onnx_blob, 
                            JSON('{"function" : "embedding", 
                                   "embeddingOutput" : "embedding" ,
                                   "input":{"input": ["DATA"]}}'));
END;
/

Usage Notes

The name of the model follows the same restrictions as those used for other machine learning
models, namely:
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• The schema name, if provided, is limited to 128 characters.

• The model name is limited to 123 characters and must follow the rules of unquoted
identifiers: they contain only alphanumeric characters, the underscore (_), dollar sign ($),
and pound sign (#). The initial character must be alphabetic.

• The model size is limited to 1 gigabyte.

• The model must not depend on external initializers. To know more about initializers and
other ONNX concepts, see https://onnx.ai/onnx/intro/concepts.html.

• There are default input and output names for input and output attributes for models that are
prepared by the Python utility. You can load those models without the JSON parameters.
For example:

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('DM_DUMP', 'my_embedding_model.onnx', 
'doc_model'));

• JSON Metadata Parameters for ONNX Models
When importing models using the IMPORT_ONNX_MODEL (DBMS_DATA_MINING),
LOAD_ONNX_MODEL (DBMS_VECTOR), or LOAD_ONNX_MODEL_CLOUD (DBMS_VECTOR) procedures,
you supply metadata as JSON parameters.

See Also:

Oracle Machine Learning for SQL User’s Guide for examples of using ONNX models
for machine learning tasks

JSON Metadata Parameters for ONNX Models
When importing models using the IMPORT_ONNX_MODEL (DBMS_DATA_MINING), LOAD_ONNX_MODEL
(DBMS_VECTOR), or LOAD_ONNX_MODEL_CLOUD (DBMS_VECTOR) procedures, you supply metadata as
JSON parameters.

Parameters

Field Value Type Description

function String Specify regression, classification, clustering, or
embedding. This is a mandatory setting.

NOTE: The only JSON parameter required when
importing the model is the machine learning
function.

input NA Describes the model input mapping. See "Input" in
Usage Notes.

regressionOutput String The name of the regression model output that
stores the regression results. The output is
expected to be a tensor of supported shape of any
supported regression output type. See "Output" in
Usage Notes.

classificationProbOutpu
t

String The name of the classification model output storing
probabilities. The output is expected to be a tensor
value of type float (width 32/64) of supported
shape. See "Automatic normalization of output
probabilities" in Usage Notes.
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Field Value Type Description

clusteringDistanceOutpu
t

String The name of the clustering model output storing
distances. The output is of type float (width
16/32/64) of supported shape.

clusteringProbOutput String The name of the clustering model output storing
probabilities. The output is of type float (width
16/32/64) of supported shape.

classificationLabelOutp
ut

String The name of the model output holding label
information.

You have the following metadata parameters to
specify the labels for classification:

• labels: specify the labels directly in the JSON
metadata

• classificationLabelOutput: specify the
model output that provides labels

If you do not specify any value for this parameter or
the function of the model is not classification, you
will receive an error.

The user can specify to use labels from the model
directly by setting classificationLabelOutput
to the model output holding the label information.
The tensor output holding the label information
must be the same size as the number of classes
and must be of integer or string type. If the tensor
that holds the labels is of string type, the returned
type of the PREDICTION operator is VARCHAR2. If
the tensor that holds the labels is of integer type,
the returned type of the PREDICTION operator is
NUMBER.

normalizeProb String Describes automatic normalization of output
probabilities. See "Automatic normalization of
output probabilities" in Usage Notes.

labels NA The labels used for classification.

If you want to use custom labels, specify the labels
using the labels field in the JSON metadata. The
field can be set to an array of length equal to the
number of classes. The labels for the class i must
be stored at index i of the label array. If an array of
strings is used, the returned type of the
PREDICTION operator is VARCHAR2. The size of the
string labels specified by the user cannot exceed
4000 bytes. If an array of numbers is used, the
returned type of the PREDICTION operator is
NUMBER.

If you do not specify labels or
classificationLabelOutput, classes are
identified by integers in the range 1 to N where N is
the number of classes. In this case, the returned
type of the PREDICTION operator is NUMBER.

embeddingOutput String The model output that holds the generated
embeddings.
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Field Value Type Description

suitableDistanceMetrics String An array of names of suitable distance metrics for
the model. The names must be the names of the
distance metrics used for the Oracle
VECTOR_DISTANCE operator. To know the
supported distance metrics, see Vector Distance
Metrics.
This parameter is for informational purposes only.

normalization Boolean A boolean value indicates if normalization is
applied to the output vector. The value 1 means
normalization is applied. Normalization is process
of converting an embedding vector so that it's norm
or length equals 1. A normalized vector maintains
its direction but its length becomes 1. The resulting
vector is often called a unit vector.

maxSequenceLength Number The maximum length of the token (input) sequence
that is meaningful for the model. This parameter
sets a limit on the number of tokens, words, or
elements in each input sequence that the model
will process. This ensures uniform input size for the
model. For example, the value could be 128, or 512
to 4096 depending on the task for which the
parameter is used. A machine translation model
might have a maxSequenceLength of 512,
accommodating sentences or paragraphs up to
512 tokens for translation tasks.
This parameter is for informational purposes only.

pooling String Indicates the pooling function performed on the
output vector.
This parameter is for informational purposes only.

modelDescription Object A JSON object that allows users to add additional
descriptions to the models complementing the
existing ONNX metadata for model description.
This parameter is for informational purposes only.

languages String A comma-separated list of language name or
abbreviation, as described in "A.1 Languages" of
Oracle Database Globalization Support Guide. If
you import multi-lingual embedding model, specify
the language or the language abbreviation as the
metadata.
This parameter is for informational purposes only.

tokenizer String Tokenizers help in transforming text into words.
There are several tokenizers available, including:
bert, gpt2, bpe, wordpiece, sentencepiece, and clip.
This parameter is for informational purposes only.
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Field Value Type Description

embeddingLayer String An identifier for the embedding layer. An
embedding layer, serving as a hidden layer in
neural networks, transforms input data from high to
lower dimensions, enhancing the network's
understanding of input relationships and data
processing efficiency. Embedding layer helps in
processing and analyzing categorical or discrete
data. It achieves this by transforming categories
into continuous embeddings, capturing the
essential semantic relationships and similarities
between them. For example the last hidden state in
some transformer, or a layer in a resnet network.
This parameter is for informational purposes only.

defaultOnNull NA Specify the replacement of missing values in the
JSON using the defaultOnNull field. If
defaultOnNull is not specified, the replacement
of missing values is not performed. The
defaultOnNull sets the missing values to NULL
by default. You can override the default value of
NULL by providing meaningful default values to
substitute for NULL. The field must be a JSON
object literal, whose fields are the input attribute
names and whose values are the default values for
the input. Note that the default value is of type
string and must be a valid Oracle PL/SQL NVL
value for the given datatype.

Note: The parameters are case-sensitive. A number of default conventions for output
parameter names and default values allows to minimize the information that you may have to
provide. The parameters such as suitableDistanceMetrics are informational only and you
are not expected to provide this information while importing the model. The JSON descriptor
may specify only one input attribute. If more are specified, you will receive an error. You will
receive an error if the normalizeProb field is specified as the JSON metadata parameter.

Usage Notes

The name of the model follows the same restrictions as those used for other machine learning
models, namely:

• Input

When importing a model from an ONNX representation, you must specify the name of the
attribute used for scoring and how it maps to actual ONNX inputs. A scoring operator uses
these attribute names to identify the columns to be used. (For example, PREDICTION ).
Follow these conventions to specify the attribute names using the input field:

not specified: When the field input is not specified, attribute names are mapped directly to
model inputs by name. That is, if the attribute name is not specified in the JSON metadata,
then the name of the input tensor is used as an attribute name. Each model input must
have dimension [batch_size, value]. If you do not specify input in the JSON metatdata,
the value must be 1. You don’t have to specify extra metadata if the input of the model
already conforms to the format. For an embedding model, a single input is provided that
may be used in batches. Here, if the input parameter is not specified in the JSON
metadata, the valid model will have [batch_size, 1].
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You must ensure that all attribute names, whether implied by the model or explicitly set by
you through the input field, are valid Oracle Database identifiers for column names. Each
attribute name within a model must be unique, ensuring no duplicates exist.

You can explicitly specify attribute name for model that use input tensors that have a
dimension larger than 1 (for example, (batch_size, 2)). In this case, you must specify a
name for each of these values for them to be interpreted as independent attribute name.
This can be done for regression, classification, clustering which are models whose scoring
operation can take multiple input attributes.

• Output

As models might have multiple outputs, you can specify which output is of interest for a
specific machine learning technique. You have the following ways to specify model
outputs:

– Specify the output name of interest in the JSON during model import. If the specified
name is not a valid model output (see the table with valid outputs for a given machine
learning function), you will receive an error.

– If the model produces an output that matches the expected output name for the given
machine learning technique (for example, classificationProbOutput) and you didn't
explicitly specify it, the output is automatically assumed.

– If you do not specify any output name and the model has a single output, the system
assumes that the single output corresponds to a default specific to the machine
learning technique. For an embedding machine learning function, the default value is
embeddingOutput.
The system reports an error if you do not specify model outputs or if you supply
outputs that the specified machine learning function does not support. The following
table displays supported outputs for a specific machine learning function:

Machi
ne
learni
ng
functi
on

Output

regres
sion

regressionOutput

classifi
cation

classificationProbOutput

clusteri
ng

clusteringDistanceOutput

embed
ding

embeddingOutput

If none of the mentioned model outputs are specified, or if you supply outputs that are
not supported by the specified machine learning function, you will receive an error.

• Automatic Normalization of Output Probabilities

Many users widely employ the softmax function to normalize the output of multi-class
classification models, as it enables to easily interpret the results of these models. The
softmax function is a mathematical function that converts a vector of real numbers into a
probability distribution. It is also known as the softargmax, or normalized exponential
function. This function is available to you to specify at the model import-time that a softmax
normalization must be applied to the tensor holding output probabilities such as
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classificationProbOutput and clusteringProbOutput. Specify normalizeProb to define
the normalization that must be applied for softmax normalization. The default setting is
none, indicating that no normalization is applied. You can choose softmax to apply a
softmax function to the probability output. Specifying any other value for this field will result
in an error during import. Additionally, specifying this field for models other than
classification and clustering will also lead to an error.

Example: Specifying JSON Metadata Parameters for Embedding Models

The following example illustrates a simple case of how you can specify JSON metadata
parameters while importing an ONNX embedding model into the Database using the
DBMS_VECTOR.IMPORT_ONNX_MODEL procedure.

DBMS_VECTOR.IMPORT_ONNX_MODEL('my_embedding_model.onnx', 'doc_model', 
                JSON('{"function" : "embedding", 
                      "embeddingOutput" : "embedding" , 
                       "input":{"input": ["DATA"]}}'));

Example: Specifying Complete JSON Metadata Parameters for Embedding Models

The following example illustrates how to provide a complete JSON metadata parameters, with
an exception of embeddingLayer, for importing embedding models.

DECLARE
  metadata JSON;
  mdtxt varchar2(4000);
BEGIN
  metadata := JSON(q'#
           {
             "function"                : "embedding",
             "embeddingOutput"         : "embedding",
             "input"                   : { "input" : ["txt"]},
             "maxSequenceLength"       : 512,
             "tokenizer"               : "bert",
             "suitableDistanceMetrics" : [ "DOT", "COSINE", "EUCLIDEAN"],
             "pooling"                 : "Mean Pooling",
             "normalization"           : true,
             "languages"               : ["US"],
             "modelDescription"        : {
                 "description" : "This model was tuned for semantic search: 
Given a query/question, if can find relevant passages. It was trained on a 
large and diverse set of (question, a
nswer) pairs.", 
                 "url" : "https://example.co/sentence-transformers/
my_embedding_model"}
           }
           #');
  -- load the onnx model
    DBMS_VECTOR.IMPORT_ONNX_MODEL('my_embedding_model.onnx', 'doc_model', 
metadata);
END;
/
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See Also:

Oracle Machine Learning for SQL User’s Guide for examples of using ONNX models
for machine learning tasks

LOAD_ONNX_MODEL_CLOUD
This procedure enables you to load an ONNX model from object storage into the Database.

Syntax

DBMS_VECTOR.LOAD_ONNX_MODEL_CLOUD (
     model_name  IN  VARCHAR2,
     credential  IN  VARCHAR2,
     uri         IN  VARCHAR2,
     metadata    IN  JSON DEFAULT JSON('{"function" : "embedding", '|| 
                          '"embeddingOutput" : "embedding", "input": {"input":
["DATA"]}}')
);

Parameters

Table 12-8    LOAD_ONNX_MODEL_CLOUD Procedure Parameters

Parameter Description

model_name The name of the model in the form [schema_name.]model_name. If you do not
specify a schema, then your own schema is used.

credential The name of the credential to be used to access Object Store.

uri The URI of the ONNX model.

metadata A JSON description of the metadata describing the model. The metadata at minimum
must describe the machine learning function supported by the model. The model's
metadata parameters are described in JSON Metadata Parameters for ONNX Models.

Examples

The following example includes a code snippet of using the
DBMS_VECTOR.LOAD_ONNX_MODEL_CLOUD procedure.

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL_CLOUD(
    model_name => 'database',
    credential => 'MYCRED', 
    uri => 'https://objectstorage.us-phoenix-1.oraclecloud.com/n/namespace-string/b/
bucketname/o/all-MiniLM-L6-v2.onnx',
    metadata => JSON('{"function" : "embedding", "embeddingOutput" : "embedding" , "input": 
{"input": ["DATA"]}}')
);

Usage Notes

The name of the model follows the same restrictions as those used for other machine learning
models, namely:

• The schema name, if provided, is limited to 128 characters.
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• The model name is limited to 123 characters and must follow the rules of unquoted
identifiers: they contain only alphanumeric characters, the underscore (_), dollar sign ($),
and pound sign (#). The initial character must be alphabetic.

• The model size is limited to 1 gigabyte.

• The model must not depend on external initializers. To know more about initializers and
other ONNX concepts, see https://onnx.ai/onnx/intro/concepts.html.

• There are default input and output names for input and output attributes for models that are
prepared by the Python utility. You can load those models without the JSON parameters.
For example:

EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL_CLOUD(
    'database', 
    'MYCRED',
    'https://objectstorage.us-phoenix-1.oraclecloud.com/n/namespace-
string/b/bucketname/o/all-MiniLM-L6-v2.onnx'
);

See Also:

Oracle Machine Learning for SQL User’s Guide for examples of using ONNX models
for machine learning tasks

QUERY
Use the DBMS_VECTOR.QUERY function to perform a similarity search operation which returns the
top-k results as a JSON array.

Syntax

Query is overloaded and supports a version with query_vector passed in as a VECTOR type in
addition to CLOB.

DBMS_VECTOR.QUERY (
    TAB_NAME             IN VARCHAR2,
    VEC_COL_NAME         IN VARCHAR2,
    QUERY_VECTOR         IN CLOB,
    TOP_K                IN NUMBER,
    VEC_PROJ_COLS        IN JSON_ARRAY_T DEFAULT NULL,
    IDX_NAME             IN VARCHAR2 DEFAULT NULL, 
    DISTANCE_METRIC      IN VARCHAR2 DEFAULT 'COSINE', 
    USE_INDEX            IN BOOLEAN DEFAULT TRUE, 
    ACCURACY             IN NUMBER DEFAULT '90', 
    IDX_PARAMETERS       IN CLOB DEFAULT NULL
) return JSON_ARRAY_T;

DBMS_VECTOR.QUERY (
    TAB_NAME             IN VARCHAR2,
    VEC_COL_NAME         IN VARCHAR2,
    QUERY_VECTOR         IN VECTOR,
    TOP_K                IN NUMBER, 
    VEC_PROJ_COLS        IN JSON_ARRAY_T DEFAULT NULL,
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    IDX_NAME             IN VARCHAR2 DEFAULT NULL,
    DISTANCE_METRIC      IN VARCHAR2 DEFAULT 'COSINE',
    USE_INDEX            IN BOOLEAN DEFAULT TRUE,
    ACCURACY             IN NUMBER DEFAULT '90',
    IDX_PARAMETERS       IN CLOB DEFAULT NULL
) return JSON_ARRAY_T;

Parameters

Specify the input parameters in JSON format.

Table 12-9    DBMS_VECTOR.QUERY Parameters

Parameter Description

tab_name Table name to query

vec_col_name Vector column name

query_vector Query vector passed in as CLOB or VECTOR.

top_k Number of results to be returned.

vec_proj_cols Columns to be projected as part of the result.

idx_name Name of the index queried.

distance_metric Distance computation metric. Defaults to COSINE. Can also be
MANHATTAN, HAMMING, DOT, EUCLIDEAN, L2_SQUARED,
EUCLIDEAN_SQUARED.

.

use_index Specifies whether the search is an approximate search or exact
search. Defaults to TRUE (that is, approximate).

accuracy Specifies the minimum desired query accuracy.

idx_parameters Specifies values of efsearch and neighbor partition
probes passed in, formatted as JSON

DATA

This function accepts the input data type as VARCHAR2, NUMBER, JSON, BOOLEAN or CLOB.

REBUILD_INDEX
Use the DBMS_VECTOR.REBUILD_INDEX function to rebuild a vector index.

Purpose

To rebuild a vector index such as Hierarchical Navigable Small World (HNSW) vector index or
Inverted File Flat (IVF) vector index. In case only the idx_name is provided, it rebuilds the index
using get_ddl. When all the parameters are provided, it performs a drop index followed by a
call to dbms_vector.create_index().

Syntax

DBMS_VECTOR.REBUILD_INDEX (
    idx_name                   IN VARCHAR2,
    table_name                 IN VARCHAR2 DEFAULT NULL,
    idx_vector_col             IN VARCHAR2 DEFAULT NULL, 
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    idx_include_cols           IN VARCHAR2 DEFAULT NULL,
    idx_partitioning_scheme    IN VARCHAR2 DEFAULT NULL,
    idx_organization           IN VARCHAR2 DEFAULT NULL,
    idx_distance_metric        IN VARCHAR2 DEFAULT 'COSINE',
    idx_accuracy               IN NUMBER DEFAULT 90,
    idx_parameters             IN CLOB DEFAULT NULL,
    idx_parallel_creation      IN NUMBER DEFAULT 1,
);

Parameters

Parameter Description

idx_name Name of the index to rebuild.

table_name Table on which to create the index.

idx_vector_col Vector column on which to create the index.

idx_include_cols A comma-separated list of column names to be covered by the index.

idx_partitioning_scheme Partitioning scheme for IVF indexes:

• GLOBAL
• LOCAL
IVF indexes support both global and local indexes on partitioned tables.
By default, these indexes are globally partitioned by centroid. You can
choose to create a local IVF index, which provides a one-to-one
relationship between the base table partitions or subpartitions and the
index partitions.

For detailed information on these partitioning schemes, see Inverted File
Flat Vector Indexes Partitioning Schemes.

idx_organization Index organization:

• NEIGHBOR PARTITIONS
• INMEMORY NEIGHBOR GRAPH
For detailed information on these organization types, see Manage the
Different Categories of Vector Indexes.

idx_distance_metric Distance metric or mathematical function used to compute the distance
between vectors:

• COSINE (default)

• MANHATTAN
• HAMMING
• JACCARD
• DOT
• EUCLIDEAN
• L2_SQUARED
• EUCLIDEAN_SQUARED
For detailed information on each of these metrics, see Vector Distance
Functions and Operators.
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Parameter Description

idx_accuracy Target accuracy at which the approximate search should be performed
when running an approximate search query.

As explained in Understand Approximate Similarity Search Using Vector
Indexes, you can specify non-default target accuracy values either by
specifying a percentage value or by specifying internal parameters
values, depending on the index type you are using.

• For an HNSW approximate search:

In the case of an HNSW approximate search, you can specify a
target accuracy percentage value to influence the number of 
candidates considered to probe the search. This is automatically
calculated by the algorithm. A value of 100 will tend to impose a
similar result as an exact search, although the system may still use
the index and will not perform an exact search. The optimizer may
choose to still use an index as it may be faster to do so given the
predicates in the query. Instead of specifying a target accuracy
percentage value, you can specify the EFSEARCH parameter to
impose a certain maximum number of candidates to be considered
while probing the index. The higher that number, the higher the
accuracy.

For detailed information, see Understand Hierarchical Navigable
Small World Indexes.

• For an IVF approximate search:

In the case of an IVF approximate search, you can specify a target
accuracy percentage value to influence the number of partitions
used to probe the search. This is automatically calculated by the
algorithm. A value of 100 will tend to impose an exact search,
although the system may still use the index and will not perform an
exact search. The optimizer may choose to still use an index as it
may be faster to do so given the predicates in the query. Instead of
specifying a target accuracy percentage value, you can specify the
NEIGHBOR PARTITION PROBES parameter to impose a certain
maximum number of partitions to be probed by the search. The
higher that number, the higher the accuracy.

For detailed information, see Understand Inverted File Flat Vector
Indexes.
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Parameter Description

idx_parameters Type of vector index and associated parameters.

Specify the indexing parameters in JSON format:

• For HNSW indexes:

– type: Type of vector index to create, that is, HNSW
– neighbors: Maximum number of connections permitted per

vector in the HNSW graph
– efConstruction: Maximum number of closest vector

candidates considered at each step of the search during
insertion

For example:

{
    "type"           : "HNSW", 
    "neighbors"      : 3, 
    "efConstruction" : 4
}

For detailed information on these parameters, see Hierarchical
Navigable Small World Index Syntax and Parameters.

• For IVF indexes:

– type: Type of vector index to create, that is, IVF
– partitions: Neighbor partition or cluster in which you want to

divide your vector space
For example:

{
    "type"       : "IVF",
    "partitions" : 5
}

For detailed information on these parameters, see Inverted File Flat
Index Syntax and Parameters.

idx_parallel_creation Number of parallel threads used for index construction.

Examples

• Specify neighbors and efConstruction for HNSW indexes:

dbms_vector.rebuild_index(
    'v_hnsw_01', 
    'vpt01', 
    'EMBEDDING', 
     NULL, 
     NULL, 
    'INMEMORY NEIGHBOR GRAPH', 
    'EUCLIDEAN', 
     95, 
    '{"type" : "HNSW", "neighbors" : 3, "efConstruction" : 4}');

Chapter 12
DBMS_VECTOR

12-31



• Specify the number of partitions for IVF indexes:

dbms_vector.rebuild_index(
    'V_IVF_01', 
    'vpt01', 
    'EMBEDDING', 
     NULL,
     NULL, 
    'NEIGHBOR PARTITIONS', 
    'EUCLIDEAN', 
     95, 
    '{"type" : "IVF", "partitions" : 5}');

RERANK
Use the DBMS_VECTOR.RERANK function to reassess and reorder an initial set of results to
retrieve more relevant search output.

Purpose

To improve the relevance and quality of search results in both similarity search and Retrieval
Augmented Generation (RAG) scenarios.

Reranking improves the quality of information ingested into an LLM by ensuring that the most
relevant documents or chunks are prioritized. This helps to reduce hallucinations and improves
the accuracy of generated outputs.

For this operation, Oracle AI Vector Search supports reranking models provided by Cohere
and Vertex AI.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

DBMS_VECTOR.RERANK(
                QUERY      IN CLOB,
                DOCUMENTS  IN JSON,
                PARAMS     IN JSON default NULL
) return JSON;
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This function accepts the input containing a query as CLOB and a list of documents in JSON
format. It then processes this information to generate a JSON object containing a reranked list of
documents, sorted by score.

For example, a reranked output includes:

{
    "index"   : "1",
    "score"   : "0.99",
    "content" : "Jupiter boasts an impressive system of 95 known moons."
}

Where,

• index specifies the position of the document in the list of input text.

• score specifies the relevance score.

• content specifies the input text corresponding to the index.

QUERY

Specify the search query (typically from an initial search) as CLOB.

DOCUMENTS

Specify a JSON array of strings (list of potentially relevant documents to rerank) in the
following format:

{
  "documents": [
  "string1",
  "string2",
    ...
  ]
}

PARAMS

Specify the following list of parameters in JSON format. All these parameters are mandatory.

{
  "provider"         : "<service provider>",
  "credential_name"  : "<credential name>",  
  "url"              : "<REST endpoint URL for reranking>",
  "model"            : "<reranking model name>",
  ...
}

Table 12-10    RERANK Parameter Details

Parameter Description

provider Supported REST provider to access for reranking:

• cohere
• vertexai
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Table 12-10    (Cont.) RERANK Parameter Details

Parameter Description

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to
your provider for making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR.CREATE_CREDENTIAL helper function to create and store
a credential, and then refer to the credential name here.

See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in 
Supported Third-Party Provider Operations and Endpoints.

model Name of the reranking model in the form:

schema.model_name
If the model name is not schema-qualified, then the schema of the
procedure invoker is used.

Additional REST provider parameters:

Optionally, specify additional provider-specific parameters for reranking.

Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on additional parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoints, see Supported Third-Party Provider
Operations and Endpoints.

Cohere example:

{
  "provider"        : "cohere", 
  "credential_name" : "COHERE_CRED",
  "url"             : "https://api.cohere.example.com/rerank",
  "model"           : "rerank-english-v3.0",
  "return_documents": false,
  "top_n"           : 3
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://googleapis.example.com/
default_ranking_config:rank",
  "model"            : "semantic-ranker-512@latest",

Chapter 12
DBMS_VECTOR

12-34



  "ignoreRecordDetailsInResponse" : true,
  "topN"             : 3
  }

Table 12-11    Additional REST Provider Parameter Details

Parameter Description

return_documents Whether to return search results with original documents or input text
(content):

• false (default, also recommended) to not return any input text
(return only index and score)

• true to return input text along with index and score

Note: With Cohere as the provider, Oracle recommends that you keep
this option disabled for better performance. You may choose to enable it
for debugging purposes when you need to view the original text.

ignoreRecordDetailsInResponse Whether to return search results with original record details or input text
(content):

• false (default) to return input text along with index and score

• true (recommended) to not return any input text (return only index
and score)

Note: With Vertex AI as the provider, Oracle recommends that you keep
this option enabled for better performance. You may choose to disable it
for debugging purposes when you need to view the original text.

top_n or topN The number of most relevant documents to return.

Examples

• Using Cohere:

declare
  params clob;
  reranked_output json;
begin
  params := '
{
  "provider": "cohere",
  "credential_name": "COHERE_CRED",
  "url": "https://api.cohere.com/v1/rerank",
  "model": "rerank-english-v3.0",
  "return_documents": true,
  "top_n": 3
}';

  reranked_output := dbms_vector.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

• Using Vertex AI:

declare
  params clob;
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  reranked_output json;
begin
  params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://discoveryengine.googleapis.com/v1/projects/1085581009881/
locations/global/rankingConfigs/default_ranking_config:rank",
  "model": "semantic-ranker-512@latest",
  "ignoreRecordDetailsInResponse": false,
  "topN": 3
}';

  reranked_output := dbms_vector.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

End-to-end example:

To run an end-to-end example scenario using this function, see Use Reranking for Better RAG
Results.

UTL_TO_CHUNKS
Use the DBMS_VECTOR.UTL_TO_CHUNKS chainable utility function to split a large plain text
document into smaller chunks of text.

Purpose

To perform a text-to-chunks transformation. This chainable utility function internally calls the
VECTOR_CHUNKS SQL function for the operation.

To embed a large document, you may first need to split it into multiple appropriate-sized
segments or chunks through a splitting process known as chunking (as explained in 
Understand the Stages of Data Transformations). A chunk can be words (to capture specific
words or word pieces), sentences (to capture a specific meaning), or paragraphs (to capture
broader themes). A single document may be split into multiple chunks, each transformed into a
vector.

Syntax

DBMS_VECTOR.UTL_TO_CHUNKS (
    DATA         IN  CLOB | VARCHAR2,
    PARAMS       IN  JSON  default  NULL
) return VECTOR_ARRAY_T;

DATA

This function accepts the input data type as CLOB or VARCHAR2.
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It returns an array of CLOBs, where each CLOB contains a chunk along with its metadata in
JSON format, as follows:

{
    "chunk_id"     : NUMBER,
    "chunk_offset" : NUMBER,
    "chunk_length" : NUMBER, 
    "chunk_data"   : "VARCHAR2(4000)"
}

For example:

{"chunk_id":1,"chunk_offset":1,"chunk_length":6,"chunk_data":"sample"}

Where,

• chunk_id specifies the chunk ID for each chunk.

• chunk_offset specifies the original position of each chunk in the source document, relative
to the start of document which has a position of 1.

• chunk_length specifies the character length of each chunk.

• chunk_data displays text pieces from each chunk.

PARAMS

Specify input parameters in JSON format:

{
    "by"           :     mode,
    "max"          :     max,
    "overlap"      :     overlap,
    "split"        :     split_condition,
    "custom_list"  :     [ split_chars1, ... ],
    "vocabulary"   :     vocabulary_name,
    "language"     :     nls_language,
    "normalize"    :     normalize_mode,
    "norm_options" :     [ normalize_option1, ... ],
    "extended"     :     boolean
}

For example:

JSON('
  { "by"           :    "vocabulary",
    "vocabulary"   :    "myvocab",
    "max"          :    "100",
    "overlap"      :    "0",
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ],
    "language"     :    "american",
    "normalize"    :    "options",
    "norm_options" :    [ "WHITESPACE" ] 
  }')
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Here is a complete description of these parameters:

Parameter Description and Acceptable Values

by Specify a mode for splitting your data, that is, to split by counting the number of characters, words, or
vocabulary tokens.

Valid values:

• characters (or chars):

Splits by counting the number of characters.
• words:

Splits by counting the number of words.

Words are defined as sequences of alphabetic characters, sequences of digits, individual
punctuation marks, or symbols. For segmented languages without white space word boundaries
(such as Chinese, Japanese, or Thai), each native character is considered a word (that is, unigram).

• vocabulary:

Splits by counting the number of vocabulary tokens.

Vocabulary tokens are words or word pieces, recognized by the vocabulary of the tokenizer that your
embedding model uses. You can load your vocabulary file using the chunker helper API
DBMS_VECTOR_CHAIN.CREATE_VOCABULARY.

Note: For accurate results, ensure that the chosen model matches the vocabulary file used for
chunking. If you are not using a vocabulary file, then ensure that the input length is defined within the
token limits of your model.

Default value: words
max Specify a limit on the maximum size of each chunk. This setting splits the input text at a fixed point where

the maximum limit occurs in the larger text. The units of max correspond to the by mode, that is, to split
data when it reaches the maximum size limit of a certain number of characters, words, numbers,
punctuation marks, or vocabulary tokens.

Valid values:

• by characters: 50 to 4000 characters

• by words: 10 to 1000 words

• by vocabulary: 10 to 1000 tokens

Default value: 100
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Parameter Description and Acceptable Values

split [by] Specify where to split the input text when it reaches the maximum size limit. This helps to keep related
data together by defining appropriate boundaries for chunks.

Valid values:

• none:

Splits at the max limit of characters, words, or vocabulary tokens.

• newline, blankline, and space:

These are single-split character conditions that split at the last split character before the max value.

Use newline to split at the end of a line of text. Use blankline to split at the end of a blank line
(sequence of characters, such as two newlines). Use space to split at the end of a blank space.

• recursively:

This is a multiple-split character condition that breaks the input text using an ordered list of
characters (or sequences).

recursively is predefined as BLANKLINE, newline, space, none in this order:

1. If the input text is more than the max value, then split by the first split character.

2. If that fails, then split by the second split character.

3. And so on.

4. If no split characters exist, then split by max wherever it appears in the text.

• sentence:

This is an end-of-sentence split condition that breaks the input text at a sentence boundary.

This condition automatically determines sentence boundaries by using knowledge of the input
language's sentence punctuation and contextual rules. This language-specific condition relies mostly
on end-of-sentence (EOS) punctuations and common abbreviations.

Contextual rules are based on word information, so this condition is only valid when splitting the text
by words or vocabulary (not by characters).

Note: This condition obeys the by word and max settings, and thus may not determine accurate
sentence boundaries in some cases. For example, when a sentence is larger than the max value, it
splits the sentence at max. Similarly, it includes multiple sentences in the text only when they fit
within the max limit.

• custom:

Splits based on a custom split characters list. You can provide custom sequences up to a limit of 16
split character strings, with a maximum length of 10 each.

Specify an array of valid text literals using the custom_list parameter.

{
    "split"        :  "custom",
    "custom_list"  :  [ "split_chars1", ... ]
}

For example:

{
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ]
}

Note: You can omit sequences only for tab (\t), newline (\n), and linefeed (\r).

Default value: recursively

Chapter 12
DBMS_VECTOR

12-39



Parameter Description and Acceptable Values

overlap Specify the amount (as a positive integer literal or zero) of the preceding text that the chunk should
contain, if any. This helps in logically splitting up related text (such as a sentence) by including some
amount of the preceding chunk text.

The amount of overlap depends on how the maximum size of the chunk is measured (in characters,
words, or vocabulary tokens). The overlap begins at the specified split condition (for example, at
newline).

Valid value: 5% to 20% of max
Default value: 0

language Specify the language of your input data.

This clause is important, especially when your text contains certain characters (for example, punctuations
or abbreviations) that may be interpreted differently in another language.

Valid values:

• NLS-supported language name or its abbreviation, as listed in Oracle Database Globalization
Support Guide.

• Custom language name or its abbreviation, as listed in Supported Languages and Data File
Locations. You use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper API to load
language-specific data (abbreviation tokens) into the database, for your specified language.

Note: You must use escape characters with any language abbreviation that is also a SQL reserved word
(for example, language abbreviations such as IN, AS, OR, IS).

For example:

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON('{ "language" : "\"in\"" }')) 
from dual;

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON_OBJECT('language' value '"in"' RETURNING JSON)) 
from dual;

Default value: NLS_LANGUAGE from session
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Parameter Description and Acceptable Values

normalize Automatically pre-processes or post-processes issues (such as multiple consecutive spaces and smart
quotes) that may arise when documents are converted into text. Oracle recommends you to use a
normalization mode to extract high-quality chunks.

Valid values:

• none:

Applies no normalization.
• all:

Normalizes common multi-byte (unicode) punctuation to standard single-byte.
• options:

Specify an array of normalization options using the norm_options parameter.

{
    "normalize"    :  "options",
    "norm_options" :  [ "normalize_option1", ... ]
}

– punctuation:

Converts quotes, dashes, and other punctuation characters supported in the character set of the
text to their common ASCII form. For example:

* U+2013 (En Dash) maps to U+002D (Hyphen-Minus)
* U+2018 (Left Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+2019 (Right Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+201B (Single High-Reversed-9 Quotation Mark) maps to U+0027 (Apostrophe)

– whitespace:

Minimizes whitespace by eliminating unnecessary characters.

For example, retain blank lines, but remove any extra newlines and interspersed spaces or tabs:
" \n \n " => "\n\n"

– widechar:

Normalizes wide, multi-byte digits and (a-z) letters to single-byte.

These are multi-byte equivalents for 0-9 and a-z A-Z, which can show up in Chinese,
Japanese, or Korean text.

For example:

{
    "normalize"    :  "options",
    "norm_options" :  [ "whitespace" ]
}

Default value: none
extended Increases the output limit of a VARCHAR2 string to 32767 bytes, without requiring you to set the

max_string_size parameter to extended.

Default value: 4000 or 32767 (when max_string_size=extended)

Example

SELECT D.id doc,
    JSON_VALUE(C.column_value, '$.chunk_id' RETURNING NUMBER) AS id,
    JSON_VALUE(C.column_value, '$.chunk_offset' RETURNING NUMBER) AS pos,
    JSON_VALUE(C.column_value, '$.chunk_length' RETURNING NUMBER) AS siz,
    JSON_VALUE(C.column_value, '$.chunk_data') AS txt
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FROM docs D,
   dbms_vector.utl_to_chunks(D.text,
   JSON('{ "by"       : "words",
           "max"      : "100",
           "overlap"  : "0",
           "split"    : "recursively",
           "language" : "american",
           "normalize": "all" }')) C;

End-to-end examples:

To run end-to-end example scenarios using this function, see Perform Chunking With
Embedding and Configure Chunking Parameters.

Related Topics

• VECTOR_CHUNKS

UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR.UTL_TO_EMBEDDING and DBMS_VECTOR.UTL_TO_EMBEDDINGS chainable
utility functions to generate one or more vector embeddings from textual documents and
images.

Purpose

To automatically generate one or more vector embeddings from textual documents and
images.

• Text to Vector:

You can perform a text-to-embedding transformation by accessing either Oracle Database
or a third-party service provider:

– Oracle Database as the service provider (default setting):

This API calls an ONNX format embedding model that you load into the database.

– Third-party embedding model:

This API makes a REST API call to your chosen remote service provider (Cohere,
Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI) or local service
provider (Ollama).

• Image to Vector:

You can also perform an image-to-embedding transformation. This API makes a REST call
to your chosen image embedding model or multimodal embedding model by Vertex AI.
Note that currently Vertex AI is the only supported service provider for this operation.
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WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

• Text to Vector:

DBMS_VECTOR.UTL_TO_EMBEDDING (
    DATA           IN CLOB,
    PARAMS         IN JSON default NULL
) return VECTOR;

DBMS_VECTOR.UTL_TO_EMBEDDINGS (
    DATA           IN VECTOR_ARRAY_T,
    PARAMS         IN JSON default NULL
) return VECTOR_ARRAY_T;

• Image to Vector:

DBMS_VECTOR.UTL_TO_EMBEDDING (
    DATA           IN BLOB,
    MODALITY       IN VARCHAR2,
    PARAMS         IN JSON default NULL
) return VECTOR;

DATA

• Text to Vector:

UTL_TO_EMBEDDING accepts the input as CLOB containing textual data (text strings or small
documents). It then converts the text to a single embedding (VECTOR).

UTL_TO_EMBEDDINGS converts an array of chunks (VECTOR_ARRAY_T) to an array of
embeddings (VECTOR_ARRAY_T).

Note:

Although data is a CLOB or a VECTOR_ARRAY_T of CLOB, the maximum input is 4000
characters. If you have input that is greater, you can use UTL_TO_CHUNKS to split
the data into smaller chunks before passing in.

• Image to Vector:
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UTL_TO_EMBEDDING accepts the input as BLOB containing media data for media files such as
images. It then converts the image input to a single embedding (VECTOR).

A generated embedding output includes:

{
    "embed_id"    :  NUMBER,
    "embed_data"  : "VARCHAR2(4000)", 
    "embed_vector": "CLOB"
}

Where,

• embed_id displays the ID number of each embedding.

• embed_data displays the input text that is transformed into embeddings.

• embed_vector displays the generated vector representations.

MODALITY

For BLOB inputs, specify the type of content to vectorize. The only supported value is image.

PARAMS

Specify input parameters in JSON format, depending on the service provider that you want to
use.

If using Oracle Database as the provider:

{
  "provider" : "database", 
  "model"    : "<in-database ONNX embedding model filename>" 
}

Table 12-12    Database Provider Parameter Details

Parameter Description

provider Specify database (default setting) to use Oracle Database as the provider. With this setting,
you must load an ONNX format embedding model into the database.

model User-specified name under which the imported ONNX embedding model is stored in Oracle
Database.

If you do not have an embedding model in ONNX format, then perform the steps listed in 
Convert Pretrained Models to ONNX Format.

If using a third-party provider:

Set the following parameters along with additional embedding parameters specific to your
provider:

• For UTL_TO_EMBEDDING:

{
  "provider"        : "<AI service provider>", 
  "credential_name" : "<credential name>",
  "url"             : "<REST endpoint URL for embedding service>", 
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  "model"           : "<REST provider embedding model name>",
  "transfer_timeout": <maximum wait time for the request to complete>,
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter 
value>" 
}

• For UTL_TO_EMBEDDINGS:

{
  "provider"        : "<AI service provider>", 
  "credential_name" : "<credential name>",
  "url"             : "<REST endpoint URL for embedding service>", 
  "model"           : "<REST provider embedding model name>",
  "transfer_timeout": <maximum wait time for the request to complete>,
  "batch_size"      : "<number of vectors to request at a time>",
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter 
value>" 
}

Table 12-13    Third-Party Provider Parameter Details

Parameter Description

provider Third-party service provider that you want to access for this operation. A REST call is made
to the specified provider to access its embedding model.

For image input, specify vertexai.

For text input, specify one of the following values:

• cohere
• googleai
• huggingface
• ocigenai
• openai
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to your provider for
making REST API calls.

You need to first set up your credential by calling the DBMS_VECTOR.CREATE_CREDENTIAL
helper function to create and store a credential, and then refer to the credential name here.
See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in Supported Third-
Party Provider Operations and Endpoints.
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Table 12-13    (Cont.) Third-Party Provider Parameter Details

Parameter Description

model Name of the third-party embedding model in the form:

schema.model_name
If you do not specify a schema, then the schema of the procedure invoker is used.

Note:
• For Generative AI, all the supported third-party models are listed in Supported Third-

Party Provider Operations and Endpoints.
• For accurate results, ensure that the chosen text embedding model matches the

vocabulary file used for chunking. If you are not using a vocabulary file, then ensure that
the input length is defined within the token limits of your model.

• To get image embeddings, you can use any image embedding model or multimodal
embedding model supported by Vertex AI. Multimodal embedding is a technique that
vectorizes data from different modalities such as text and images.

When using a multimodal embedding model to generate embeddings, ensure that you
use the same model to vectorize both types of content (text and images). By doing so,
the resulting embeddings are compatible and situated in the same vector space, which
allows for effective comparison between the two modalities during similarity searches.

transfer_timeout Maximum time to wait for the request to complete.

The default value is 60 seconds. You can increase this value for busy web servers.

batch_size Maximum number of vectors to request at a time.

For example, for a batch size of 50, if 100 chunks are passed, then this API sends two
requests with an array of 50 strings each. If 30 chunks are passed (which is lesser than the
defined batch size), then the API sends those in a single request.

For REST calls, it is more efficient to send a batch of inputs at a time rather than requesting
a single input per call. Increasing the batch size can provide better performance, whereas
reducing the batch size may reduce memory and data usage, especially if your provider has
a rate limit.

The default or maximum allowed value depends on the third-party provider settings.

max_count Maximum number of times the API can be called for a given third-party provider.

When set to an integer n, max_count stops the execution of the API for the given provider
beyond n times. This prevents accidental calling of a third-party over some limit, for example
to avoid surpassing the service amount that you have purchased.

Additional third-party provider parameters:

Optionally, specify additional provider-specific parameters.

Table 12-14    Additional REST Provider Parameter Details

Parameter Description

input_type Type of input to vectorize.

Let us look at some example configurations for all third-party providers:
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Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on the parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

• The generated embedding results may be different between requests for the
same input and configuration, depending on your embedding model or floating
point precision. However, this does not affect your queries (and provides
semantically correct results) because the vector distance will be similar.

Cohere example:

{
  "provider"       : "cohere",
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.example.com/embed",
  "model"          : "embed-english-light-v2.0",
  "input_type"     : "search_query"
}

Generative AI example:

{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://generativeai.oci.example.com/embedText",
  "model"          : "cohere.embed-english-v3.0",
  "batch_size"     : 10
}

Google AI example:

{
  "provider"       : "googleai",
  "credential_name": "GOOGLEAI_CRED",
  "url"            : "https://googleapis.example.com/models/",
  "model"          : "embedding-001",
  "max_count"      : 500
}

Hugging Face example:

{
  "provider"       : "huggingface",
  "credential_name": "HF_CRED",
  "url"            : "https://api.huggingface.example.com/",
  "model"          : "sentence-transformers/all-MiniLM-L6-v2"
}
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Ollama example:

{
  "provider"       : "ollama", 
  "host"           : "local", 
  "url"            : "http://localhost:11434/api/embeddings", 
  "model"          : "phi3:mini"
}

OpenAI example:

{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.example.com/embeddings",
  "model"          : "text-embedding-3-small"
}

Vertex AI example:

{
  "provider"       : "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url"            : "https://googleapis.example.com/models/",
  "model"          : "textembedding-gecko:predict"
}

Examples

You can use UTL_TO_EMBEDDING in a SELECT clause and UTL_TO_EMBEDDINGS in a FROM clause,
as follows:

UTL_TO_EMBEDDING:

• Text to vector using Generative AI:

The following examples use UTL_TO_EMBEDDING to generate an embedding with Hello
world as the input.

Here, the cohere.embed-english-v3.0 model is used by accessing Generative AI as the
provider. You can replace the model value with any other supported model that you want to
use with Generative AI, as listed in Supported Third-Party Provider Operations and
Endpoints.

-- declare embedding parameters

var params clob;

begin
 :params := '
{ 
  "provider": "ocigenai",
  "credential_name": "OCI_CRED", 
  "url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/
20231130/actions/embedText",
  "model": "cohere.embed-english-v3.0",
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  "batch_size": 10
}';
end;
/

-- get text embedding: PL/SQL example

declare
  input clob;
  v vector;
begin
  input := 'Hello world';

  v := dbms_vector.utl_to_embedding(input, json(params));
  dbms_output.put_line(vector_serialize(v));
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

-- get text embedding: select example

select dbms_vector.utl_to_embedding('Hello world', json(:params)) from 
dual;

• Image to vector using Vertex AI:

The following examples use UTL_TO_EMBEDDING to generate an embedding by accessing
the Vertex AI's multimodal embedding model.

Here, the input is parrots.jpg, VEC_DUMP is a local directory that stores the parrots.jpg
file, and the modality is specified as image.

-- declare embedding parameters

var params clob;

begin
  :params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/
locations/LOCATION/publishers/google/models/",
  "model": "multimodalembedding:predict"
}';
end;
/

-- get image embedding: PL/SQL example

declare
  v vector;
  output clob;
begin
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  v := dbms_vector.utl_to_embedding(
    to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));
  output := vector_serialize(v);
  dbms_output.put_line('vector data=' || dbms_lob.substr(output, 100) || 
'...');
end;
/

-- get image embedding: select example

select dbms_vector.utl_to_embedding(
  to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));

• Text to vector using in-database embedding model:

The following example uses UTL_TO_EMBEDDING to generate a vector embedding by calling
an ONNX format embedding model (doc_model) loaded into Oracle Database.

Here, the provider is database, and the input is hello.

var params clob; 
exec :params := '{"provider":"database", "model":"doc_model"}';

select dbms_vector.utl_to_embedding('hello', json(:params)) from dual;

For complete example, see Convert Text String to Embedding Within Oracle Database.

• End-to-end examples:

To run various end-to-end example scenarios using UTL_TO_EMBEDDING, see Generate
Embedding.

UTL_TO_EMBEDDINGS:

• Text to vector using in-database embedding model:

The following example uses UTL_TO_EMBEDDINGS to generate an array of embeddings by
calling an ONNX format embedding model (doc_model) loaded into Oracle Database.

Here, the provider is database, and the input is a PDF document stored in the
documentation_tab table. As you can see, you first use UTL_TO_CHUNKS to split the data
into smaller chunks before passing in to UTL_TO_EMBEDDINGS.

CREATE TABLE doc_chunks as
(select dt.id doc_id, et.embed_id, et.embed_data, 
to_vector(et.embed_vector) embed_vector
 from
   documentation_tab dt,
   dbms_vector.utl_to_embeddings(
       dbms_vector.utl_to_chunks(dbms_vector.utl_to_text(dt.data), 
json('{"normalize":"all"}')),
       json('{"provider":"database", "model":"doc_model"}')) t,
   JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH 
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector 
CLOB PATH '$.embed_vector')) et
);
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For complete example, see SQL Quick Start Using a Vector Embedding Model Uploaded
into the Database.

• End-to-end examples:

To run various end-to-end example scenarios using UTL_TO_EMBEDDINGS, see Perform
Chunking With Embedding.

UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR.UTL_TO_GENERATE_TEXT chainable utility function to generate a text
response for a given prompt or an image, by accessing third-party text generation models.

Purpose

To communicate with Large Language Models (LLMs) through natural language conversations.
You can generate a textual answer, description, or summary for prompts and images, given as
input to LLM-powered chat interfaces.

• Prompt to Text:

A prompt can be an input text string, such as a question that you ask an LLM. For
example, "What is Oracle Text?". A prompt can also be a command, such as "Summarize
the following ...", "Draft an email asking for ...", or "Rewrite the
following ...", and can include results from a search. The LLM responds with a textual
answer or description based on the specified task in the prompt.

For this operation, this API makes a REST call to your chosen remote third-party provider
(Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI) or local third-
party provider (Ollama).

• Image to Text:

You can also prompt with a media file, such as an image, to extract text from pictures or
photos. You supply a text question as the prompt (such as "What is this image about?"
or "How many birds are there in this painting?") along with the image. The LLM
responds with a textual analysis or description of the contents of the image.

For this operation, this API makes a REST call to your chosen remote third-party provider
(Google AI, Hugging Face, OpenAI, or Vertex AI) or local third-party provider (Ollama).

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.
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Syntax

This function accepts the input as CLOB containing text data (for textual prompts) or as BLOB
containing media data (for media files such as images). It then processes this information to
generate a new CLOB containing the generated text.

• Prompt to Text:

DBMS_VECTOR.UTL_TO_GENERATE_TEXT (
        DATA          IN CLOB,
        PARAMS        IN JSON default NULL
) return CLOB;

• Image to Text:

DBMS_VECTOR.UTL_TO_GENERATE_TEXT(
          TEXT_DATA      IN CLOB,
          MEDIA_DATA     IN BLOB,
          MEDIA_TYPE     IN VARCHAR2 default 'image/jpeg',
          PARAMS         IN JSON default NULL
) return CLOB;

DATA and TEXT_DATA

Specify the textual prompt as CLOB for the DATA or TEXT_DATA clause.

Note:

Hugging Face uses an image captioning model that does not require a prompt, when
giving an image as input. If you input a prompt along with an image, then the prompt
will be ignored.

MEDIA_DATA

Specify the BLOB file, such as an image or a visual PDF file.

MEDIA_TYPE

Specify the image format for the given image or visual PDF file (BLOB file) in one of the
supported image data MIME types. For example:

• For PNG: image/png
• For JPEG: image/jpeg
• For PDF: application/pdf

Note:

For a complete list of the supported image formats, refer to your third-party provider's
documentation.
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PARAMS

Specify the following input parameters in JSON format, depending on the service provider that
you want to access for text generation:

{
  "provider"         : "<AI service provider>",
  "credential_name"  : "<credential name>",  
  "url"              : "<REST endpoint URL for text generation service>",
  "model"            : "<text generation model name>",
  "transfer_timeout" : <maximum wait time for the request to complete>,
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter value>"
}

Table 12-15    UTL_TO_GENERATE_TEXT Parameter Details

Parameter Description

provider Supported REST provider that you want to access to generate text.

Specify one of the following values:

For CLOB input:

• cohere
• googleai
• huggingface
• ocigenai
• openai
• vertexai
For BLOB input:

• googleai
• huggingface
• openai
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to your provider
for making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR.CREATE_CREDENTIAL helper function to create and store a credential,
and then refer to the credential name here. See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in Supported
Third-Party Provider Operations and Endpoints.

model Name of the third-party text generation model in the form:

schema.model_name
If the model name is not schema-qualified, then the schema of the procedure invoker
is used.

Note: For Generative AI, all the supported third-party models are listed in Supported
Third-Party Provider Operations and Endpoints.

transfer_timeout Maximum time to wait for the request to complete.

The default value is 60 seconds. You can increase this value for busy web servers.
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Table 12-15    (Cont.) UTL_TO_GENERATE_TEXT Parameter Details

Parameter Description

max_count Maximum number of times the API can be called for a given third-party provider.

When set to an integer n, max_count stops the execution of the API for the given
provider beyond n times. This prevents accidental calling of a third-party over some
limit, for example to avoid surpassing the service amount that you have purchased.

Additional third-party provider parameters:

Optionally, specify additional provider-specific parameters.

Table 12-16    Additional REST Provider Parameter Details

Parameter Description

max_tokens Maximum number of tokens in the output text.

temperature Degree of randomness used when generating the output text, in the range of
0.0-5.0.

To generate the same output for a prompt, use 0. To generate a random new text for
that prompt, increase the temperature.

Note: Start with the temperature set to 0. If you do not require random results, a
recommended temperature value is between 0 and 1. A higher value is not
recommended because a high temperature may produce creative text, which might
also include hallucinations.

topP Probability of tokens in the output, in the range of 0.0–1.0.

A lower value provides less random responses and a higher value provides more
random responses.

candidateCount Number of response variations to return, in the range of 1-4.

maxOutputTokens Maximum number of tokens to generate for each response.

Let us look at some example configurations for all third-party providers:

Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on additional parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

Cohere example:

{
  "provider"       : "cohere", 
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.example.com/chat",
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  "model"          : "command"
}

Generative AI example:

Note:

For Generative AI, if you want to pass any additional REST provider-specific
parameters, then you must enclose those in chatRequest.

{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-example.com/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens"    : 256
                     }
}

Google AI example:

{
  "provider"        : "googleai",
  "credential_name" : "GOOGLEAI_CRED",
  "url"             : "https://googleapis.example.com/models/",
  "model"           : "gemini-pro:generateContent"
}

Hugging Face example:

{
  "provider"        : "huggingface",
  "credential_name" : "HF_CRED",
  "url"             : "https://api.huggingface.example.com/models/",
  "model"           : "gpt2"
}

Ollama example:

{
  "provider"       : "ollama", 
  "host"           : "local", 
  "url"            : "http://localhost:11434/api/generate", 
  "model"          : "phi3:mini"
}
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OpenAI example:

{
  "provider"        : "openai",
  "credential_name" : "OPENAI_CRED",
  "url"             : "https://api.openai.example.com",
  "model"           : "gpt-4o-mini",
  "max_tokens"      : 60,
  "temperature"     : 1.0
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://googleapis.example.com/models/",
  "model"            : "gemini-1.0-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}

Examples

• Prompt to Text:

The following statements generate a text response by making a REST call to Generative
AI. The prompt given here is "What is Oracle Text?".

Here, the cohere.command-r-16k and meta.llama-3.1-70b-instruct models are used. You
can replace the model value with any other supported model that you want to use with
Generative AI, as listed in Supported Third-Party Provider Operations and Endpoints.

Using the cohere.command-r-16k model:

-- select example

var params clob;
exec :params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';

select dbms_vector.utl_to_generate_text(
 'What is Oracle Text?',
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 json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';

  output := dbms_vector.utl_to_generate_text(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Using the meta.llama-3.1-70b-instruct model:

-- select example

var params clob;
exec :params := '
{
   "provider"       : "ocigenai",
   "credential_name": "OCI_CRED",
   "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
   "model"          : "meta.llama-3.1-70b-instruct",
   "chatRequest"    : {
                       "topK" : 1
                      }
}';

select dbms_vector.utl_to_generate_text(
 'What is Oracle Text?',
 json(:params)) from dual;
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-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
   "provider"       : "ocigenai",
   "credential_name": "OCI_CRED",
   "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
   "model"          : "meta.llama-3.1-70b-instruct",
   "chatRequest"    : {
                       "topK" : 1
                      }
}';

  output := dbms_vector.utl_to_generate_text(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

End-to-end examples:

To run end-to-end example scenarios, see Generate Text Response.

• Image to Text:

The following statements generate a text response by making a REST call to OpenAI.
Here, the input is an image (sample_image.jpeg) along with the prompt "Describe this
image?".

-- select example

var input clob;
var media_data blob;
var media_type clob;
var params clob;

begin
  :input := 'Describe this image';
  :media_data := load_blob_from_file('DEMO_DIR', 'sample_image.jpeg');
  :media_type := 'image/jpeg';
  :params := '
{
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  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60
}';
end;
/

select dbms_vector.utl_to_generate_text(:input, :media_data, :media_type, 
json(:params));

-- PL/SQL example

declare
  input clob;
  media_data blob;
  media_type varchar2(32);
  params clob;
  output clob;

begin
  input := 'Describe this image';
  media_data := load_blob_from_file('DEMO_DIR', 'image_file');
  media_type := 'image/jpeg';
  params := '
{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60
}';

  output := dbms_vector.utl_to_generate_text(
    input, media_data, media_type, json(params));
  dbms_output.put_line(output);

  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
  if media_data is not null then
    dbms_lob.freetemporary(media_data);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

End-to-end examples:

To run end-to-end example scenarios, see Describe Image Content.
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DBMS_VECTOR_CHAIN
The DBMS_VECTOR_CHAIN package enables advanced operations with Oracle AI Vector Search,
such as chunking and embedding data along with text generation and summarization
capabilities. It is more suitable for text processing with similarity search and hybrid search,
using functionality that can be pipelined together for an end-to-end search.

This table lists the DBMS_VECTOR_CHAIN subprograms and briefly describes them.

Table 12-17    DBMS_VECTOR_CHAIN Package Subprograms

Subprogram Description

Chainable Utility (UTL) Functions:

These functions are a set of modular and flexible functions within vector utility PL/SQL packages. You
can chain these together to automate end-to-end data transformation and similarity search operations.

UTL_TO_TEXT Extracts plain text data from documents

UTL_TO_CHUNKS Splits data into smaller pieces or chunks

UTL_TO_EMBEDDING and
UTL_TO_EMBEDDINGS

Converts text or an image to one or more vector embeddings

UTL_TO_SUMMARY Extracts a summary from documents

UTL_TO_GENERATE_TEXT Generates text for a prompt (input string) or an image

Credential Helper Procedures:

These procedures enable you to securely manage authentication credentials in the database. You
require these credentials to enable access to third-party service providers for making REST calls.

CREATE_CREDENTIAL Creates a credential name

DROP_CREDENTIAL Drops an existing credential name

Preference Helper Procedures:

These procedures enable you to manage vectorizer preferences, to be used with the
CREATE_HYBRID_VECTOR_INDEX and ALTER_INDEX SQL statements when creating or managing
hybrid vector indexes.

CREATE_PREFERENCE Creates a vectorizer preference

DROP_PREFERENCE Drops an existing vectorizer preference

Chunker Helper Procedures:

These procedures enable you to configure vocabulary and language data (abbreviations), to be used
with the VECTOR_CHUNKS SQL function or UTL_TO_CHUNKS PL/SQL function.

CREATE_VOCABULARY Loads your token vocabulary file into the database

DROP_VOCABULARY Removes existing vocabulary data

CREATE_LANG_DATA Loads your language data file into the database

DROP_LANG_DATA Removes existing abbreviation data

Data Access Function:

This function enables you to enhance search operations.

RERANK Reorders search results for a more relevant output
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Note:

The DBMS_VECTOR_CHAIN package requires you to install the CONTEXT component of
Oracle Text, an Oracle Database technology that provides indexing, term extraction,
text analysis, text summarization, word and theme searching, and other utilities.

Due to underlying dependance on the text processing capabilities of Oracle Text,
note that both the UTL_TO_TEXT and UTL_TO_SUMMARY chainable utility functions and
all the chunker helper procedures are available only in this package through Oracle
Text.

• CREATE_CREDENTIAL
Use the DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL credential helper procedure to create a
credential name for storing user authentication details in Oracle Database.

• CREATE_LANG_DATA
Use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper procedure to load your
own language data file into the database.

• CREATE_PREFERENCE
Use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE helper procedure to create a vectorizer
preference, to be used when creating or updating hybrid vector indexes.

• CREATE_VOCABULARY
Use the DBMS_VECTOR_CHAIN.CREATE_VOCABULARY chunker helper procedure to load your
own token vocabulary file into the database.

• DROP_CREDENTIAL
Use the DBMS_VECTOR_CHAIN.DROP_CREDENTIAL credential helper procedure to drop an
existing credential name from the data dictionary.

• DROP_LANG_DATA
Use the DBMS_VECTOR_CHAIN.DROP_LANG_DATA chunker helper procedure to remove
abbreviation data from the data dictionary.

• DROP_PREFERENCE
Use the DBMS_VECTOR_CHAIN.DROP_PREFERENCE preference helper procedure to remove an
existing Vectorizer preference.

• DROP_VOCABULARY
Use the DBMS_VECTOR_CHAIN.DROP_VOCABULARY chunker helper procedure to remove
vocabulary data from the data dictionary.

• RERANK
Use the DBMS_VECTOR_CHAIN.RERANK function to reassess and reorder an initial set of
results to retrieve more relevant search output.

• UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain
text document into smaller chunks of text.

• UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING and
DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDINGS chainable utility functions to generate one or
more vector embeddings from textual documents and images.
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• UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT chainable utility function to generate
a text response for a given prompt or an image, by accessing third-party text generation
models.

• UTL_TO_SUMMARY
Use the DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY chainable utility function to generate a
summary for textual documents.

• UTL_TO_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_TEXT chainable utility function to convert an input
document (for example, PDF, DOC, JSON, XML, or HTML) to plain text.

• Supported Languages and Data File Locations
These are the supported languages for which language data files are distributed by default
in the specified directories.

CREATE_CREDENTIAL
Use the DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL credential helper procedure to create a
credential name for storing user authentication details in Oracle Database.

Purpose

To securely manage authentication credentials in the database. You require these credentials
to enable access during REST API calls to your chosen third-party service provider, such as
Cohere, Google AI, Hugging Face, Oracle Cloud Infrastructure (OCI) Generative AI, OpenAI,
or Vertex AI.

A credential name holds authentication parameters, such as user name, password, access
token, private key, or fingerprint.

Note that if you are using Oracle Database as the service provider, then you do not need to
create a credential.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL (
    CREDENTIAL_NAME     IN VARCHAR2,
    PARAMS              IN JSON DEFAULT NULL
);
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CREDENTIAL_NAME

Specify a name of the credential that you want to create for holding authentication parameters.

PARAMS

Specify authentication parameters in JSON format, based on your chosen service provider.

Generative AI requires the following authentication parameters:

{ 
"user_ocid"       : "<user ocid>",
"tenancy_ocid"    : "<tenancy ocid>",
"compartment_ocid": "<compartment ocid>",
"private_key"     : "<private key>",
"fingerprint"     : "<fingerprint>" 
}

Cohere, Google AI, Hugging Face, OpenAI, and Vertex AI require the following authentication
parameter:

{ "access_token": "<access token>" }

Table 12-18    Parameter Details

Parameter Description

user_ocid Oracle Cloud Identifier (OCID) of the user, as listed on the User Details page in the
OCI console.

tenancy_ocid OCID of your tenancy, as listed on the Tenancy Details page in the OCI console.

compartment_ocid OCID of your compartment, as listed on the Compartments information page in the
OCI console.

private_key OCI private key.

Note: The generated private key may appear as:

-----BEGIN RSA PRIVATE KEY-----
<private key string>
-----END RSA PRIVATE KEY-----

You pass the <private key string> value (excluding the BEGIN and END lines),
either as a single line or as multiple lines.

fingerprint Fingerprint of the OCI profile key, as listed on the User Details page under API Keys in
the OCI console.

access_token Access token obtained from your third-party service provider.

Required Privilege

You need the CREATE CREDENTIAL privilege to call this API.
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Examples

• For Generative AI:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  
jo.put('user_ocid','ocid1.user.oc1..aabbalbbaa1112233aabbaabb1111222aa1111b
b');
  
jo.put('tenancy_ocid','ocid1.tenancy.oc1..aaaaalbbbb1112233aaaabbaa1111222a
aa111a');
  
jo.put('compartment_ocid','ocid1.compartment.oc1..ababalabab1112233abababab
1111222aba11ab');
  jo.put('private_key','AAAaaaBBB11112222333...AAA111AAABBB222aaa1a/+');
  jo.put('fingerprint','01:1a:a1:aa:12:a1:12:1a:ab:12:01:ab:a1:12:ab:1a');
  dbms_vector_chain.create_credential(
    credential_name   => 'OCI_CRED',
    params            => json(jo.to_string));
end;
/

• For Cohere:

declare
  jo json_object_t;
begin
  jo := json_object_t();
  jo.put('access_token', 'A1Aa0abA1AB1a1Abc123ab1A123ab123AbcA12a');
  dbms_vector_chain.create_credential(
    credential_name   => 'COHERE_CRED',
    params            => json(jo.to_string));
end;
/

End-to-end examples:

To run end-to-end example scenarios using this procedure, see Use LLM-Powered APIs to
Generate Summary and Text.

CREATE_LANG_DATA
Use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper procedure to load your own
language data file into the database.

Purpose

To create custom language data for your chosen language (specified using the language
chunking parameter).

A language data file contains language-specific abbreviation tokens. You can supply this data
to the chunker to help in accurately determining sentence boundaries of chunks, by using
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knowledge of the input language's end-of-sentence (EOS) punctuations, abbreviations, and
contextual rules.

Usage Notes

• All supported languages are distributed with the default language-specific abbreviation
dictionaries. You can create a language data based on the abbreviation tokens loaded in
the schema.table.column, using a user-specified language data name (PREFERENCE_NAME).

• After loading your language data, you can use language-specific chunking by specifying
the language chunking parameter with VECTOR_CHUNKS or UTL_TO_CHUNKS.

• You can query these data dictionary views to access existing language data:

– ALL_VECTOR_LANG displays all available languages data.

– USER_VECTOR_LANG displays languages data from the schema of the current user.

– ALL_VECTOR_ABBREV_TOKENS displays abbreviation tokens from all available language
data.

– USER_VECTOR_ABBREV_TOKENS displays abbreviation tokens from the language data
owned by the current user.

Syntax

DBMS_VECTOR_CHAIN.CREATE_LANG_DATA (
    PARAMS       IN JSON default NULL
);

PARAMS

Specify the input parameters in JSON format:

{
    table_name, 
    column_name, 
    language,
    preference_name
}

Table 12-19    Parameter Details

Parameter Description Required Default Value

table_name Name of the table (along with the optional
table owner) in which you want to load the
language data

Yes No value

column_name Column name in the language data table
in which you want to load the language
data

Yes No value

language Any supported language name, as listed
in Supported Languages and Data File
Locations

Yes No value

preference_name User-specified preference name for this
language data

Yes No value
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Example

declare
    params CLOB := '{"table_name"      : "eos_data_1",
                     "column_name"     : "token",
                     "language"        : "indonesian",
                     "preference_name" : "my_lang_1"}';
begin
    DBMS_VECTOR_CHAIN.CREATE_LANG_DATA(
        JSON (params));
end;
/

End-to-end example:

To run an end-to-end example scenario using this procedure, see Create and Use Custom
Language Data.

Related Topics

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

• Text Processing Views

CREATE_PREFERENCE
Use the DBMS_VECTOR_CHAIN.CREATE_PREFERENCE helper procedure to create a vectorizer
preference, to be used when creating or updating hybrid vector indexes.

Purpose

To create a vectorizer preference.

This allows you to customize vector search parameters of a hybrid vector indexing pipeline.
The goal of a vectorizer preference is to provide you with a straightforward way to configure
how to chunk or embed your documents, without requiring a deep understanding of various
chunking or embedding strategies.

Usage Notes

A vectorizer preference is a JSON object that collectively holds user-specified values related
to the following chunking, embedding, or vector index creation parameters:

• Chunking (UTL_TO_CHUNKS and VECTOR_CHUNKS)

• Embedding (UTL_TO_EMBEDDING, UTL_TO_EMBEDDINGS, and VECTOR_EMBEDDING)

• Vector index creation (distance, accuracy, and vector_idxtype)

All vector index preferences follow the same JSON syntax as defined for their corresponding
DBMS_VECTOR and DBMS_VECTOR_CHAIN APIs.

After creating a vectorizer preference, you can use the VECTORIZER parameter to pass this
preference name in the paramstring of the PARAMETERS clause for
CREATE_HYBRID_VECTOR_INDEX and ALTER_INDEX SQL statements.
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Creating a preference is optional. If you do not specify any optional preference, then the index
is created with system defaults.

Syntax

DBMS_VECTOR_CHAIN.CREATE_PREFERENCE (
    PREF_NAME     IN VARCHAR2,
    PREF_TYPE     IN VARCHAR2,
    PARAMS        IN JSON default NULL
);

PREF_NAME

Specify the name of the vectorizer preference to create.

PREF_TYPE

Type of preference. The only supported preference type is:

DBMS_VECTOR_CHAIN.VECTORIZER

PARAMS

Specify vector search-specific parameters in JSON format:

• Embedding Parameter

• Chunking Parameters

• Vector Index Parameters

• Paths Parameter

Embedding Parameter:

{ "model" : <embedding_model_for_vector_generation> }

For example:

{ "model" : MY_INDB_MODEL }

model specifies the name under which your ONNX embedding model is stored in the database.

If you do not have an in-database embedding model in ONNX format, then perform the steps
listed in Oracle Database AI Vector Search User's Guide.

Chunking Parameters:

{
    "by"           :  mode,
    "max"          :  max,
    "overlap"      :  overlap,
    "split"        :  split_condition,
    "vocabulary"   :  vocabulary_name,
    "language"     :  nls_language,
    "normalize"    :  normalize_mode,
    "extended"     :  boolean
}
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For example:

JSON(
 '{ "by"           :    "vocabulary",
    "max"          :    "100",
    "overlap"      :    "0",
    "split"        :    "none",
    "vocabulary"   :    "myvocab",
    "language"     :    "american",
    "normalize"    :    "all" 
  }')

If you specify split as custom and normalize as options, then you must additionally specify
the custom_list and norm_options parameters, respectively:

JSON(
 '{ "by"           :    "vocabulary",
    "max"          :    "100",
    "overlap"      :    "0",
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ],
    "vocabulary"   :    "myvocab",
    "language"     :    "american",
    "normalize"    :    "options",
    "norm_options" :    [ "whitespace" ] 
  }')

The following table describes all the chunking parameters:

Parameter Description and Acceptable Values

by Specify a mode for splitting your data, that is, to split by counting the number of characters, words, or
vocabulary tokens.

Valid values:

• characters (or chars):

Splits by counting the number of characters.
• words:

Splits by counting the number of words.

Words are defined as sequences of alphabetic characters, sequences of digits, individual
punctuation marks, or symbols. For segmented languages without white space word boundaries
(such as Chinese, Japanese, or Thai), each native character is considered a word (that is, unigram).

• vocabulary:

Splits by counting the number of vocabulary tokens.

Vocabulary tokens are words or word pieces, recognized by the vocabulary of the tokenizer that your
embedding model uses. You can load your vocabulary file using the chunker helper API
DBMS_VECTOR_CHAIN.CREATE_VOCABULARY.

Note: For accurate results, ensure that the chosen model matches the vocabulary file used for
chunking. If you are not using a vocabulary file, then ensure that the input length is defined within the
token limits of your model.

Default value: words
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Parameter Description and Acceptable Values

max Specify a limit on the maximum size of each chunk. This setting splits the input text at a fixed point where
the maximum limit occurs in the larger text. The units of max correspond to the by mode, that is, to split
data when it reaches the maximum size limit of a certain number of characters, words, numbers,
punctuation marks, or vocabulary tokens.

Valid values:

• by characters: 50 to 4000 characters

• by words: 10 to 1000 words

• by vocabulary: 10 to 1000 tokens

Default value: 100
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Parameter Description and Acceptable Values

split [by] Specify where to split the input text when it reaches the maximum size limit. This helps to keep related
data together by defining appropriate boundaries for chunks.

Valid values:

• none:

Splits at the max limit of characters, words, or vocabulary tokens.

• newline, blankline, and space:

These are single-split character conditions that split at the last split character before the max value.

Use newline to split at the end of a line of text. Use blankline to split at the end of a blank line
(sequence of characters, such as two newlines). Use space to split at the end of a blank space.

• recursively:

This is a multiple-split character condition that breaks the input text using an ordered list of
characters (or sequences).

recursively is predefined as BLANKLINE, newline, space, none in this order:

1. If the input text is more than the max value, then split by the first split character.

2. If that fails, then split by the second split character.

3. And so on.

4. If no split characters exist, then split by max wherever it appears in the text.

• sentence:

This is an end-of-sentence split condition that breaks the input text at a sentence boundary.

This condition automatically determines sentence boundaries by using knowledge of the input
language's sentence punctuation and contextual rules. This language-specific condition relies mostly
on end-of-sentence (EOS) punctuations and common abbreviations.

Contextual rules are based on word information, so this condition is only valid when splitting the text
by words or vocabulary (not by characters).

Note: This condition obeys the by word and max settings, and thus may not determine accurate
sentence boundaries in some cases. For example, when a sentence is larger than the max value, it
splits the sentence at max. Similarly, it includes multiple sentences in the text only when they fit
within the max limit.

• custom:

Splits based on a custom split characters list. You can provide custom sequences up to a limit of 16
split character strings, with a maximum length of 10 each.

Specify an array of valid text literals using the custom_list parameter.

{
    "split"        :  "custom",
    "custom_list"  :  [ "split_chars1", ... ]
}

For example:

{
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ]
}

Note: You can omit sequences only for tab (\t), newline (\n), and linefeed (\r).

Default value: recursively
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Parameter Description and Acceptable Values

overlap Specify the amount (as a positive integer literal or zero) of the preceding text that the chunk should
contain, if any. This helps in logically splitting up related text (such as a sentence) by including some
amount of the preceding chunk text.

The amount of overlap depends on how the maximum size of the chunk is measured (in characters,
words, or vocabulary tokens). The overlap begins at the specified split condition (for example, at
newline).

Valid value: 5% to 20% of max
Default value: 0

language Specify the language of your input data.

This clause is important, especially when your text contains certain characters (for example, punctuations
or abbreviations) that may be interpreted differently in another language.

Valid values:

• NLS-supported language name or its abbreviation, as listed in Oracle Database Globalization
Support Guide.

• Custom language name or its abbreviation, as listed in Supported Languages and Data File
Locations. You use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper API to load
language-specific data (abbreviation tokens) into the database, for your specified language.

Note: You must use escape characters with any language abbreviation that is also a SQL reserved word
(for example, language abbreviations such as IN, AS, OR, IS).

For example:

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON('{ "language" : "\"in\"" }')) 
from dual;

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON_OBJECT('language' value '"in"' RETURNING JSON)) 
from dual;

Default value: NLS_LANGUAGE from session
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Parameter Description and Acceptable Values

normalize Automatically pre-processes or post-processes issues (such as multiple consecutive spaces and smart
quotes) that may arise when documents are converted into text. Oracle recommends you to use a
normalization mode to extract high-quality chunks.

Valid values:

• none:

Applies no normalization.
• all:

Normalizes common multi-byte (unicode) punctuation to standard single-byte.
• options:

Specify an array of normalization options using the norm_options parameter.

{
    "normalize"    :  "options",
    "norm_options" :  [ "normalize_option1", ... ]
}

– punctuation:

Converts quotes, dashes, and other punctuation characters supported in the character set of the
text to their common ASCII form. For example:

* U+2013 (En Dash) maps to U+002D (Hyphen-Minus)
* U+2018 (Left Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+2019 (Right Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+201B (Single High-Reversed-9 Quotation Mark) maps to U+0027 (Apostrophe)

– whitespace:

Minimizes whitespace by eliminating unnecessary characters.

For example, retain blank lines, but remove any extra newlines and interspersed spaces or tabs:
" \n \n " => "\n\n"

– widechar:

Normalizes wide, multi-byte digits and (a-z) letters to single-byte.

These are multi-byte equivalents for 0-9 and a-z A-Z, which can show up in Chinese,
Japanese, or Korean text.

For example:

{
    "normalize"    :  "options",
    "norm_options" :  [ "whitespace" ]
}

Default value: none
extended Increases the output limit of a VARCHAR2 string to 32767 bytes, without requiring you to set the

max_string_size parameter to extended.

Default value: 4000 or 32767 (when max_string_size=extended)

Vector Index Parameters:

{ 
  "distance"        :  <vector_distance>,
  "accuracy"        :  <vector_accuracy>, 
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  "vector_idxtype"  :  <vector_idxtype>
}

For example:

{ 
  "distance"        :  COSINE,
  "accuracy"        :  95, 
  "vector_idxtype"  :  HNSW
}

Parameter Description

distance Distance metric or mathematical function used to compute the distance between
vectors:

• COSINE
• MANHATTAN
• DOT
• EUCLIDEAN
• L2_SQUARED
• EUCLIDEAN_SQUARED
Note: Currently, the HAMMING and JACCARD vector distance metrics are not
supported with hybrid vector indexes.

For detailed information on each of these metrics, see Vector Distance Functions
and Operators.

Default value: COSINE
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Parameter Description

accuracy Target accuracy at which the approximate search should be performed when
running an approximate search query using vector indexes.

As explained in Understand Approximate Similarity Search Using Vector Indexes,
you can specify non-default target accuracy values either by specifying a
percentage value or by specifying internal parameters values, depending on the
index type you are using.

• For a Hierarchical Navigable Small World (HNSW) approximate search:

In the case of an HNSW approximate search, you can specify a target
accuracy percentage value to influence the number of  candidates considered
to probe the search. This is automatically calculated by the algorithm. A value
of 100 will tend to impose a similar result as an exact search, although the
system may still use the index and will not perform an exact search. The
optimizer may choose to still use an index as it may be faster to do so given
the predicates in the query. Instead of specifying a target accuracy percentage
value, you can specify the EFSEARCH parameter to impose a certain maximum
number of candidates to be considered while probing the index. The higher
that number, the higher the accuracy.

For detailed information, see Understand Hierarchical Navigable Small World
Indexes.

• For an Inverted File Flat (IVF) approximate search:

In the case of an IVF approximate search, you can specify a target accuracy
percentage value to influence the number of partitions used to probe the
search. This is automatically calculated by the algorithm. A value of 100 will
tend to impose an exact search, although the system may still use the index
and will not perform an exact search. The optimizer may choose to still use an
index as it may be faster to do so given the predicates in the query. Instead of
specifying a target accuracy percentage value, you can specify the NEIGHBOR
PARTITION PROBES parameter to impose a certain maximum number of
partitions to be probed by the search. The higher that number, the higher the
accuracy.

For detailed information, see Understand Inverted File Flat Vector Indexes.
Valid range for both HNSW and IVF vector indexes is:

> 0 and <= 100
Default value: None

vector_idxtype Type of vector index to create:

• HNSW for an HNSW vector index

• IVF for an IVF vector index

For detailed information on each of these index types, see Manage the Different
Categories of Vector Indexes.

Default value: IVF

Paths Parameter:

This field allows specification of an array of path objects. There can be many path objects and
each path object must specify a type and a path_list.
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Note:

If the user does not specify the paths field, the whole document would be
considered.

"paths":[
        {"type"      : "<path_type>",
         "path_list" : ["<path_list_array>"]
        }
        ]

Let us consider a sample JSON document:

 {
      "person": 
       {
         "bio": "James is a data scientist who specializes in natural 
language .. ",
         "profile":
          {
              "text" : "James is a data scientist with expertise in Python 
programming...",
              "embedding" : 
[1.60541728E-001,5.76677322E-002,4.0473938E-003,1.2037459E-001,-5.98970801E-00
4, ..]
          },
         "avatar": "https://example.com/images/James.jpg"
       },
      "product": 
      {
        "description": "A social media analytics tool.", "It helps brands 
track...",
        "image": "https://example.com/images/data_tool.jpg",
        "embedding" : 
[1.60541728E-001,5.76677322E-002,4.0473938E-003,1.2037459E-001,-5.98970801E-00
4, ..]
      }
 }

And a path_list corresponding to the above JSON is provided here:

"paths": [
         {"type"       : "VECTOR",
          "path_list" : ["$.person.profile.embedding", "$.product.embedding"]
         },
         {"type"       : "STRING",
          "path_list" : ["$.person.bio", "$.product.description"]
         }
         ] 

The following table describes the details of paths parameter:
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Parameter Accepted Values

type The possible values for this field are:

• STRING - for fields that need to be
converted to vectors.

• VECTOR - for fields that are already vectors.

path_list Accepts an array of paths with at least one
path in valid JSON format - ($.a.b.c.d).

Note: For the VECTOR option, Oracle currently
accepts one vector array per path.

Example

begin
  DBMS_VECTOR_CHAIN.CREATE_PREFERENCE(
    'my_vec_spec',
     DBMS_VECTOR_CHAIN.VECTORIZER,
     json('{ "vector_idxtype" :  "hnsw",
             "model"          :  "my_doc_model",
             "by"             :  "words",
             "max"            :  100,
             "overlap"        :  10,
             "split"          :  "recursively,
             "language"       :  "english",
             "paths":          : [
                                 {
                                  "type"      : "VECTOR",
                                  "path_list" : ["$.person.profile.embedding"]
                                  }
                                 ]  
              }'));
end;
/

CREATE HYBRID VECTOR INDEX my_hybrid_idx on 
    doc_table(text_column) 
    parameters('VECTORIZER my_vec_spec');

Related Topics

• CREATE HYBRID VECTOR INDEX

CREATE_VOCABULARY
Use the DBMS_VECTOR_CHAIN.CREATE_VOCABULARY chunker helper procedure to load your own
token vocabulary file into the database.

Purpose

To create custom token vocabulary that is recognized by the tokenizer used by your vector
embedding model.
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A vocabulary contains a set of tokens (words and word pieces) that are collected during a
model's statistical training process. You can supply this data to the chunker to help in
accurately selecting the text size that approximates the maximum input limit imposed by the
tokenizer of your embedding model.

Usage Notes

• Usually, the supported vocabulary files (containing recognized tokens) are included as part
of a model's distribution. Oracle recommends to use the vocabulary files associated with
your model.

If a vocabulary file is not available, then you may download one of the following files
depending on the tokenizer type:

– WordPiece:

Vocabulary file (vocab.txt) for the "bert-base-uncased" (English) or "bert-base-
multilingual-cased" model

– Byte-Pair Encoding (BPE):

Vocabulary file (vocab.json) for the "GPT2" model

Use the following python script to extract the file:

import json
import sys
 
with open(sys.argv[1], encoding="utf-8") as f:
  d = json.load(f)
  for term in d:
    print(term)

– SentencePiece:

Vocabulary file (tokenizer.json) for the "xlm-roberta-base" model

Use the following python script to extract the file:

import json
import sys
 
with open(sys.argv[1], encoding="utf-8") as f:
  d = json.load(f)
  for entry in d["model"]["vocab"]:
    print(entry[0])

Ensure to save your vocabulary files in UTF-8 encoding.

• You can create a vocabulary based on the tokens loaded in the schema.table.column,
using a user-specified vocabulary name (vocabulary_name).

After loading your vocabulary data, you can use the by vocabulary chunking mode (with
VECTOR_CHUNKS or UTL_TO_CHUNKS) to split input data by counting the number of tokens.

• You can query these data dictionary views to access existing vocabulary data:

– ALL_VECTOR_VOCAB displays all available vocabularies.

– USER_VECTOR_VOCAB displays vocabularies from the schema of the current user.

– ALL_VECTOR_VOCAB_TOKENS displays a list of tokens from all available vocabularies.
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– USER_VECTOR_VOCAB_TOKENS displays a list of tokens from the vocabularies owned by
the current user.

Syntax

DBMS_VECTOR_CHAIN.CREATE_VOCABULARY(
    PARAMS      IN JSON default NULL
);

PARAMS

Specify the input parameters in JSON format:

{
    table_name, 
    column_name, 
    vocabulary_name,
    format,
    cased
}

Table 12-20    Parameter Details

Parameter Description Required Default Value

table_name Name of the table (along with the optional
table owner) in which you want to load the
vocabulary file

Yes No value

column_name Column name in the vocabulary table in
which you want to load the vocabulary file

Yes No value

vocabulary_name User-specified name of the vocabulary,
along with the optional owner name (if
other than the current owner)

Yes No value

format • xlm for SentencePiece tokenization

• bert for WordPiece tokenization

• gpt2 for BPE tokenization

Yes No value

cased Character-casing of the vocabulary, that
is, vocabulary to be treated as cased or
uncased

No false

Example

DECLARE
  params clob := '{"table_name"       : "doc_vocabtab",
                   "column_name"      : "token",
                   "vocabulary_name"  : "doc_vocab",
                   "format"           : "bert",
                   "cased"            : false}';

BEGIN
  dbms_vector_chain.create_vocabulary(json(params));
END;
/
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End-to-end example:

To run an end-to-end example scenario using this procedure, see Create and Use Custom
Vocabulary.

Related Topics

• VECTOR_CHUNKS

• UTL_TO_CHUNKS

• Text Processing Views

DROP_CREDENTIAL
Use the DBMS_VECTOR_CHAIN.DROP_CREDENTIAL credential helper procedure to drop an existing
credential name from the data dictionary.

Syntax

DBMS_VECTOR_CHAIN.DROP_CREDENTIAL (
    CREDENTIAL_NAME      IN VARCHAR2
);

CREDENTIAL_NAME

Specify the credential name that you want to drop.

Examples

• For Generative AI:

exec dbms_vector_chain.drop_credential('OCI_CRED');

• For Cohere:

exec dbms_vector_chain.drop_credential('COHERE_CRED');

DROP_LANG_DATA
Use the DBMS_VECTOR_CHAIN.DROP_LANG_DATA chunker helper procedure to remove
abbreviation data from the data dictionary.

Syntax

DBMS_VECTOR_CHAIN.DROP_LANG_DATA(
    PREF_NAME     IN VARCHAR2
);

LANG

Specify the name of the language data that you want to drop for a given language.
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Example

DBMS_VECTOR_CHAIN.DROP_LANG_DATA('indonesian');

DROP_PREFERENCE
Use the DBMS_VECTOR_CHAIN.DROP_PREFERENCE preference helper procedure to remove an
existing Vectorizer preference.

Syntax

DBMS_VECTOR_CHAIN.DROP_PREFERENCE (PREF_NAME);

PREF_NAME

Name of the Vectorizer preference to drop.

Example

DBMS_VECTOR_CHAIN.DROP_PREFERENCE ('scott_vectorizer');

DROP_VOCABULARY
Use the DBMS_VECTOR_CHAIN.DROP_VOCABULARY chunker helper procedure to remove
vocabulary data from the data dictionary.

Syntax

DBMS_VECTOR_CHAIN.DROP_VOCABULARY(
    VOCABULARY_NAME    IN VARCHAR2   
);

VOCAB_NAME

Specify the name of the vocabulary that you want to drop, in the form:

vocabulary_name

or

owner.vocabulary_name

Example

DBMS_VECTOR_CHAIN.DROP_VOCABULARY('MY_VOCAB_1');

Chapter 12
DBMS_VECTOR_CHAIN

12-80



RERANK
Use the DBMS_VECTOR_CHAIN.RERANK function to reassess and reorder an initial set of results to
retrieve more relevant search output.

Purpose

To improve the relevance and quality of search results in both similarity search and Retrieval
Augmented Generation (RAG) scenarios.

Reranking improves the quality of information ingested into an LLM by ensuring that the most
relevant documents or chunks are prioritized. This helps to reduce hallucinations and improves
the accuracy of generated outputs.

For this operation, Oracle AI Vector Search supports reranking models provided by Cohere
and Vertex AI.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

DBMS_VECTOR_CHAIN.RERANK(
                QUERY      IN CLOB,
                DOCUMENTS  IN JSON,
                PARAMS     IN JSON default NULL
) return JSON;

This function accepts the input containing a query as CLOB and a list of documents in JSON
format. It then processes this information to generate a JSON object containing a reranked list of
documents, sorted by score.

For example, a reranked output includes:

{
    "index"   : "1",
    "score"   : "0.99",
    "content" : "Jupiter boasts an impressive system of 95 known moons."
}

Where,

• index specifies the position of the document in the list of input text.
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• score specifies the relevance score.

• content specifies the input text corresponding to the index.

QUERY

Specify the search query (typically from an initial search) as CLOB.

DOCUMENTS

Specify a JSON array of strings (list of potentially relevant documents to rerank) in the
following format:

{
  "documents": [
  "string1",
  "string2",
    ...
  ]
}

PARAMS

Specify the following list of parameters in JSON format. All these parameters are mandatory.

{
  "provider"         : "<service provider>",
  "credential_name"  : "<credential name>",  
  "url"              : "<REST endpoint URL for reranking>",
  "model"            : "<reranking model name>",
  ...
}

Table 12-21    RERANK Parameter Details

Parameter Description

provider Supported REST provider to access for reranking:

• cohere
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to
your provider for making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL helper function to create
and store a credential, and then refer to the credential name here.

See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in 
Supported Third-Party Provider Operations and Endpoints.

model Name of the reranking model in the form:

schema.model_name
If the model name is not schema-qualified, then the schema of the
procedure invoker is used.
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Additional REST provider parameters:

Optionally, specify additional provider-specific parameters for reranking.

Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on additional parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoints, see Supported Third-Party Provider
Operations and Endpoints.

Cohere example:

{
  "provider"        : "cohere", 
  "credential_name" : "COHERE_CRED",
  "url"             : "https://api.cohere.example.com/rerank",
  "model"           : "rerank-english-v3.0",
  "return_documents": false,
  "top_n"           : 3
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://googleapis.example.com/
default_ranking_config:rank",
  "model"            : "semantic-ranker-512@latest",
  "ignoreRecordDetailsInResponse" : true,
  "topN"             : 3
  }

Table 12-22    Additional REST Provider Parameter Details

Parameter Description

return_documents Whether to return search results with original documents or input text
(content):

• false (default, also recommended) to not return any input text
(return only index and score)

• true to return input text along with index and score

Note: With Cohere as the provider, Oracle recommends that you keep
this option disabled for better performance. You may choose to enable it
for debugging purposes when you need to view the original text.
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Table 12-22    (Cont.) Additional REST Provider Parameter Details

Parameter Description

ignoreRecordDetailsInResponse Whether to return search results with original record details or input text
(content):

• false (default) to return input text along with index and score

• true (recommended) to not return any input text (return only index
and score)

Note: With Vertex AI as the provider, Oracle recommends that you keep
this option enabled for better performance. You may choose to disable it
for debugging purposes when you need to view the original text.

top_n or topN The number of most relevant documents to return.

Examples

• Using Cohere:

declare
  params clob;
  reranked_output json;
begin
  params := '
{
  "provider": "cohere",
  "credential_name": "COHERE_CRED",
  "url": "https://api.cohere.com/v1/rerank",
  "model": "rerank-english-v3.0",
  "return_documents": true,
  "top_n": 3
}';

  reranked_output := dbms_vector_chain.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

• Using Vertex AI:

declare
  params clob;
  reranked_output json;
begin
  params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://discoveryengine.googleapis.com/v1/projects/1085581009881/
locations/global/rankingConfigs/default_ranking_config:rank",
  "model": "semantic-ranker-512@latest",
  "ignoreRecordDetailsInResponse": false,
  "topN": 3
}';
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  reranked_output := dbms_vector_chain.rerank(:query, 
json(:initial_retrieval_docs), json(params));
  dbms_output.put_line(json_serialize(reranked_output));
end;
/

End-to-end example:

To run an end-to-end example scenario using this function, see Use Reranking for Better RAG
Results.

UTL_TO_CHUNKS
Use the DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS chainable utility function to split a large plain text
document into smaller chunks of text.

Purpose

To perform a text-to-chunks transformation. This chainable utility function internally calls the
VECTOR_CHUNKS SQL function for the operation.

To embed a large document, you may first need to split it into multiple appropriate-sized
segments or chunks through a splitting process known as chunking (as explained in 
Understand the Stages of Data Transformations). A chunk can be words (to capture specific
words or word pieces), sentences (to capture a specific meaning), or paragraphs (to capture
broader themes). A single document may be split into multiple chunks, each transformed into a
vector.

Syntax

DBMS_VECTOR_CHAIN.UTL_TO_CHUNKS (
    DATA         IN  CLOB | VARCHAR2,
    PARAMS       IN  JSON  default  NULL
) return VECTOR_ARRAY_T;

DATA

This function accepts the input data type as CLOB or VARCHAR2.

It returns an array of CLOBs, where each CLOB contains a chunk along with its metadata in
JSON format, as follows:

{
    "chunk_id"     : NUMBER,
    "chunk_offset" : NUMBER,
    "chunk_length" : NUMBER, 
    "chunk_data"   : "VARCHAR2(4000)"
}

For example:

{"chunk_id":1,"chunk_offset":1,"chunk_length":6,"chunk_data":"sample"}

Where,
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• chunk_id specifies the chunk ID for each chunk.

• chunk_offset specifies the original position of each chunk in the source document, relative
to the start of document which has a position of 1.

• chunk_length specifies the character length of each chunk.

• chunk_data displays text pieces from each chunk.

PARAMS

Specify input parameters in JSON format.

{
    "by"           :     mode,
    "max"          :     max,
    "overlap"      :     overlap,
    "split"        :     split_condition,
    "custom_list"  :     [ split_chars1, ... ],
    "vocabulary"   :     vocabulary_name,
    "language"     :     nls_language,
    "normalize"    :     normalize_mode,
    "norm_options" :     [ normalize_option1, ... ],
    "extended"     :     boolean
}

For example:

JSON('
  { "by"           :    "vocabulary",
    "vocabulary"   :    "myvocab",
    "max"          :    "100",
    "overlap"      :    "0",
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ],
    "language"     :    "american",
    "normalize"    :    "options",
    "norm_options" :    [ "whitespace" ] 
  }')

Here is a complete description of these parameters:
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Parameter Description and Acceptable Values

by Specify a mode for splitting your data, that is, to split by counting the number of characters, words, or
vocabulary tokens.

Valid values:

• characters (or chars):

Splits by counting the number of characters.
• words:

Splits by counting the number of words.

Words are defined as sequences of alphabetic characters, sequences of digits, individual
punctuation marks, or symbols. For segmented languages without white space word boundaries
(such as Chinese, Japanese, or Thai), each native character is considered a word (that is, unigram).

• vocabulary:

Splits by counting the number of vocabulary tokens.

Vocabulary tokens are words or word pieces, recognized by the vocabulary of the tokenizer that your
embedding model uses. You can load your vocabulary file using the chunker helper API
DBMS_VECTOR_CHAIN.CREATE_VOCABULARY.

Note: For accurate results, ensure that the chosen model matches the vocabulary file used for
chunking. If you are not using a vocabulary file, then ensure that the input length is defined within the
token limits of your model.

Default value: words
max Specify a limit on the maximum size of each chunk. This setting splits the input text at a fixed point where

the maximum limit occurs in the larger text. The units of max correspond to the by mode, that is, to split
data when it reaches the maximum size limit of a certain number of characters, words, numbers,
punctuation marks, or vocabulary tokens.

Valid values:

• by characters: 50 to 4000 characters

• by words: 10 to 1000 words

• by vocabulary: 10 to 1000 tokens

Default value: 100
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Parameter Description and Acceptable Values

split [by] Specify where to split the input text when it reaches the maximum size limit. This helps to keep related
data together by defining appropriate boundaries for chunks.

Valid values:

• none:

Splits at the max limit of characters, words, or vocabulary tokens.

• newline, blankline, and space:

These are single-split character conditions that split at the last split character before the max value.

Use newline to split at the end of a line of text. Use blankline to split at the end of a blank line
(sequence of characters, such as two newlines). Use space to split at the end of a blank space.

• recursively:

This is a multiple-split character condition that breaks the input text using an ordered list of
characters (or sequences).

recursively is predefined as BLANKLINE, newline, space, none in this order:

1. If the input text is more than the max value, then split by the first split character.

2. If that fails, then split by the second split character.

3. And so on.

4. If no split characters exist, then split by max wherever it appears in the text.

• sentence:

This is an end-of-sentence split condition that breaks the input text at a sentence boundary.

This condition automatically determines sentence boundaries by using knowledge of the input
language's sentence punctuation and contextual rules. This language-specific condition relies mostly
on end-of-sentence (EOS) punctuations and common abbreviations.

Contextual rules are based on word information, so this condition is only valid when splitting the text
by words or vocabulary (not by characters).

Note: This condition obeys the by word and max settings, and thus may not determine accurate
sentence boundaries in some cases. For example, when a sentence is larger than the max value, it
splits the sentence at max. Similarly, it includes multiple sentences in the text only when they fit
within the max limit.

• custom:

Splits based on a custom split characters list. You can provide custom sequences up to a limit of 16
split character strings, with a maximum length of 10 each.

Specify an array of valid text literals using the custom_list parameter.

{
    "split"        :  "custom",
    "custom_list"  :  [ "split_chars1", ... ]
}

For example:

{
    "split"        :    "custom",
    "custom_list"  :    [ "<p>" , "<s>" ]
}

Note: You can omit sequences only for tab (\t), newline (\n), and linefeed (\r).

Default value: recursively
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Parameter Description and Acceptable Values

overlap Specify the amount (as a positive integer literal or zero) of the preceding text that the chunk should
contain, if any. This helps in logically splitting up related text (such as a sentence) by including some
amount of the preceding chunk text.

The amount of overlap depends on how the maximum size of the chunk is measured (in characters,
words, or vocabulary tokens). The overlap begins at the specified split condition (for example, at
newline).

Valid value: 5% to 20% of max
Default value: 0

language Specify the language of your input data.

This clause is important, especially when your text contains certain characters (for example, punctuations
or abbreviations) that may be interpreted differently in another language.

Valid values:

• NLS-supported language name or its abbreviation, as listed in Oracle Database Globalization
Support Guide.

• Custom language name or its abbreviation, as listed in Supported Languages and Data File
Locations. You use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper API to load
language-specific data (abbreviation tokens) into the database, for your specified language.

Note: You must use escape characters with any language abbreviation that is also a SQL reserved word
(for example, language abbreviations such as IN, AS, OR, IS).

For example:

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON('{ "language" : "\"in\"" }')) 
from dual;

SELECT dbms_vector_chain.utl_to_chunks('this is an example', 
   JSON_OBJECT('language' value '"in"' RETURNING JSON)) 
from dual;

Default value: NLS_LANGUAGE from session

Chapter 12
DBMS_VECTOR_CHAIN

12-89



Parameter Description and Acceptable Values

normalize Automatically pre-processes or post-processes issues (such as multiple consecutive spaces and smart
quotes) that may arise when documents are converted into text. Oracle recommends you to use a
normalization mode to extract high-quality chunks.

Valid values:

• none:

Applies no normalization.
• all:

Normalizes common multi-byte (unicode) punctuation to standard single-byte.
• options:

Specify an array of normalization options using the norm_options parameter.

{
    "normalize"    :  "options",
    "norm_options" :  [ "normalize_option1", ... ]
}

– punctuation:

Converts quotes, dashes, and other punctuation characters supported in the character set of the
text to their common ASCII form. For example:

* U+2013 (En Dash) maps to U+002D (Hyphen-Minus)
* U+2018 (Left Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+2019 (Right Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+201B (Single High-Reversed-9 Quotation Mark) maps to U+0027 (Apostrophe)

– whitespace:

Minimizes whitespace by eliminating unnecessary characters.

For example, retain blank lines, but remove any extra newlines and interspersed spaces or tabs:
" \n \n " => "\n\n"

– widechar:

Normalizes wide, multi-byte digits and (a-z) letters to single-byte.

These are multi-byte equivalents for 0-9 and a-z A-Z, which can show up in Chinese,
Japanese, or Korean text.

For example:

{
    "normalize"    :  "options",
    "norm_options" :  [ "whitespace" ]
}

Default value: none
extended Increases the output limit of a VARCHAR2 string to 32767 bytes, without requiring you to set the

max_string_size parameter to extended.

Default value: 4000 or 32767 (when max_string_size=extended)

Example

SELECT D.id doc,
    JSON_VALUE(C.column_value, '$.chunk_id' RETURNING NUMBER) AS id,
    JSON_VALUE(C.column_value, '$.chunk_offset' RETURNING NUMBER) AS pos,
    JSON_VALUE(C.column_value, '$.chunk_length' RETURNING NUMBER) AS siz,
    JSON_VALUE(C.column_value, '$.chunk_data') AS txt
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FROM docs D,
   dbms_vector_chain.utl_to_chunks(D.text,
   JSON('{ "by"       : "words",
           "max"      : "100",
           "overlap"  : "0",
           "split"    : "recursively",
           "language" : "american",
           "normalize": "all" }')) C;

End-to-end examples:

To run end-to-end example scenarios using this function, see Perform Chunking With
Embedding and Configure Chunking Parameters.

Related Topics

• VECTOR_CHUNKS

UTL_TO_EMBEDDING and UTL_TO_EMBEDDINGS
Use the DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING and DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDINGS
chainable utility functions to generate one or more vector embeddings from textual documents
and images.

Purpose

To automatically generate one or more vector embeddings from textual documents and
images.

• Text to Vector:

You can perform a text-to-embedding transformation by accessing either Oracle Database
or a third-party service provider:

– Oracle Database as the service provider (default setting):

This API calls an ONNX format embedding model that you load into the database.

– Third-party embedding model:

This API makes a REST API call to your chosen remote service provider (Cohere,
Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI) or local service
provider (Ollama).

• Image to Vector:

You can also perform an image-to-embedding transformation. This API makes a REST call
to your chosen image embedding model or multimodal embedding model by Vertex AI.
Note that currently Vertex AI is the only supported service provider for this operation.
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WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

• Text to Vector:

DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING (
    DATA           IN CLOB,
    PARAMS         IN JSON default NULL
) return VECTOR;

DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDINGS (
    DATA           IN VECTOR_ARRAY_T,
    PARAMS         IN JSON default NULL
) return VECTOR_ARRAY_T;

• Image to Vector:

DBMS_VECTOR_CHAIN.UTL_TO_EMBEDDING (
    DATA           IN BLOB,
    MODALITY       IN VARCHAR2,
    PARAMS         IN JSON default NULL
) return VECTOR;

DATA

• Text to Vector:

UTL_TO_EMBEDDING accepts the input as CLOB containing textual data (text strings or small
documents). It then converts the text to a single embedding (VECTOR).

UTL_TO_EMBEDDINGS converts an array of chunks (VECTOR_ARRAY_T) to an array of
embeddings (VECTOR_ARRAY_T).

Note:

Although data is a CLOB or a VECTOR_ARRAY_T of CLOB, the maximum input is 4000
characters. If you have input that is greater, you can use UTL_TO_CHUNKS to split
the data into smaller chunks before passing in.

• Image to Vector:
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UTL_TO_EMBEDDING accepts the input as BLOB containing media data for media files such as
images. It then converts the image input to a single embedding (VECTOR).

A generated embedding output includes:

{
    "embed_id"    : NUMBER,
    "embed_data"  : "VARCHAR2(4000)", 
    "embed_vector": "CLOB"
}

Where,

• embed_id displays the ID number of each embedding.

• embed_data displays the input text that is transformed into embeddings.

• embed_vector displays the generated vector representations.

MODALITY

For BLOB inputs, specify the type of content to vectorize. The only supported value is image.

PARAMS

Specify input parameters in JSON format, depending on the service provider that you want to
use.

If using Oracle Database as the provider:

{
  "provider" : "database", 
  "model"    : "<in-database ONNX embedding model filename>" 
}

Table 12-23    Database Provider Parameter Details

Parameter Description

provider Specify database (default setting) to use Oracle Database as the provider. With this setting,
you must load an ONNX format embedding model into the database.

model User-specified name under which the imported ONNX embedding model is stored in Oracle
Database.

If you do not have an embedding model in ONNX format, then perform the steps listed in 
Convert Pretrained Models to ONNX Format.

If using a third-party provider:

Set the following parameters along with additional embedding parameters specific to your
provider:

• For UTL_TO_EMBEDDING:

{
  "provider"        : "<AI service provider>", 
  "credential_name" : "<credential name>",
  "url"             : "<REST endpoint URL for embedding service>", 
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  "model"           : "<REST provider embedding model name>",
  "transfer_timeout": <maximum wait time for the request to complete>,
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter 
value>" 
}

• For UTL_TO_EMBEDDINGS:

{
  "provider"        : "<AI service provider>", 
  "credential_name" : "<credential name>",
  "url"             : "<REST endpoint URL for embedding service>", 
  "model"           : "<REST provider embedding model name>",
  "transfer_timeout": <maximum wait time for the request to complete>,
  "batch_size"      : "<number of vectors to request at a time>",
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter 
value>" 
}

Table 12-24    Third-Party Provider Parameter Details

Parameter Description

provider Third-party service provider that you want to access for this operation. A REST call is made
to the specified provider to access its embedding model.

For image input, specify vertexai.

For text input, specify one of the following values:

• cohere
• googleai
• huggingface
• ocigenai
• openai
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to your provider for
making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL helper function to create and store a
credential, and then refer to the credential name here. See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in Supported Third-
Party Provider Operations and Endpoints.
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Table 12-24    (Cont.) Third-Party Provider Parameter Details

Parameter Description

model Name of the third-party embedding model in the form:

schema.model_name
If you do not specify a schema, then the schema of the procedure invoker is used.

Note:
• For Generative AI, all the supported third-party models are listed in Supported Third-

Party Provider Operations and Endpoints.
• For accurate results, ensure that the chosen text embedding model matches the

vocabulary file used for chunking. If you are not using a vocabulary file, then ensure that
the input length is defined within the token limits of your model.

• To get image embeddings, you can use any image embedding model or multimodal
embedding model supported by Vertex AI. Multimodal embedding is a technique that
vectorizes data from different modalities such as text and images.

When using a multimodal embedding model to generate embeddings, ensure that you
use the same model to vectorize both types of content (text and images). By doing so,
the resulting embeddings are compatible and situated in the same vector space, which
allows for effective comparison between the two modalities during similarity searches.

transfer_timeout Maximum time to wait for the request to complete.

The default value is 60 seconds. You can increase this value for busy web servers.

batch_size Maximum number of vectors to request at a time.

For example, for a batch size of 50, if 100 chunks are passed, then this API sends two
requests with an array of 50 strings each. If 30 chunks are passed (which is lesser than the
defined batch size), then the API sends those in a single request.

For REST calls, it is more efficient to send a batch of inputs at a time rather than requesting
a single input per call. Increasing the batch size can provide better performance, whereas
reducing the batch size may reduce memory and data usage, especially if your provider has
a rate limit.

The default or maximum allowed value depends on the third-party provider settings.

max_count Maximum number of times the API can be called for a given third-party provider.

When set to an integer n, max_count stops the execution of the API for the given provider
beyond n times. This prevents accidental calling of a third-party over some limit, for example
to avoid surpassing the service amount that you have purchased.

Additional third-party provider parameters:

Optionally, specify additional provider-specific parameters.

Table 12-25    Additional REST Provider Parameter Details

Parameter Description

input_type Type of input to vectorize.

Let us look at some example configurations for all third-party providers:
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Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on the parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

• The generated embedding results may be different between requests for the
same input and configuration, depending on your embedding model or floating
point precision. However, this does not affect your queries (and provides
semantically correct results) because the vector distance will be similar.

Cohere example:

{
  "provider"       : "cohere",
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.example.com/embed",
  "model"          : "embed-english-light-v2.0",
  "input_type"     : "search_query"
}

Generative AI example:

{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://generativeai.oci.example.com/embedText",
  "model"          : "cohere.embed-english-v3.0",
  "batch_size"     : 10
}

Google AI example:

{
  "provider"       : "googleai",
  "credential_name": "GOOGLEAI_CRED",
  "url"            : "https://googleapis.example.com/models/",
  "model"          : "embedding-001"
}

Hugging Face example:

{
  "provider"       : "huggingface",
  "credential_name": "HF_CRED",
  "url"            : "https://api.huggingface.example.com/",
  "model"          : "sentence-transformers/all-MiniLM-L6-v2"
}
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Ollama example:

{
  "provider"       : "ollama", 
  "host"           : "local", 
  "url"            : "http://localhost:11434/api/embeddings", 
  "model"          : "phi3:mini"
}

OpenAI example:

{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.example.com/embeddings",
  "model"          : "text-embedding-3-small"
}

Vertex AI example:

{
  "provider"       : "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url"            : "https://googleapis.example.com/models/",
  "model"          : "textembedding-gecko:predict"
}

Examples

You can use UTL_TO_EMBEDDING in a SELECT clause and UTL_TO_EMBEDDINGS in a FROM clause,
as follows:

UTL_TO_EMBEDDING:

• Text to vector using Generative AI:

The following examples use UTL_TO_EMBEDDING to generate an embedding with Hello
world as the input.

Here, the cohere.embed-english-v3.0 model is used by accessing Generative AI as the
provider. You can replace the model value with any other supported model that you want to
use with Generative AI, as listed in Supported Third-Party Provider Operations and
Endpoints.

-- declare embedding parameters

var params clob;

begin
 :params := '
{ 
  "provider": "ocigenai",
  "credential_name": "OCI_CRED", 
  "url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/
20231130/actions/embedText",
  "model": "cohere.embed-english-v3.0",
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  "batch_size": 10
}';
end;
/

-- get text embedding: PL/SQL example

declare
  input clob;
  v vector;
begin
  input := 'Hello world';

  v := dbms_vector_chain.utl_to_embedding(input, json(params));
  dbms_output.put_line(vector_serialize(v));
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

-- get text embedding: select example

select dbms_vector_chain.utl_to_embedding('Hello world', json(:params)) 
from dual;

• Image to vector using Vertex AI:

The following examples use UTL_TO_EMBEDDING to generate an embedding by accessing
the Vertex AI's multimodal embedding model.

Here, the input is parrots.jpg, VEC_DUMP is a local directory that stores the parrots.jpg
file, and the modality is specified as image.

-- declare embedding parameters

var params clob;

begin
  :params := '
{
  "provider": "vertexai",
  "credential_name": "VERTEXAI_CRED",
  "url": "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/
locations/LOCATION/publishers/google/models/",
  "model": "multimodalembedding:predict"
}';
end;
/

-- get image embedding: PL/SQL example

declare
  v vector;
  output clob;
begin
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  v := dbms_vector_chain.utl_to_embedding(
    to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));
  output := vector_serialize(v);
  dbms_output.put_line('vector data=' || dbms_lob.substr(output, 100) || 
'...');
end;
/

-- get image embedding: select example

select dbms_vector_chain.utl_to_embedding(
  to_blob(bfilename('VEC_DUMP', 'parrots.jpg')), 'image', json(:params));

• Text to vector using in-database embedding model:

The following example uses UTL_TO_EMBEDDING to generate a vector embedding by calling
an ONNX format embedding model (doc_model) loaded into Oracle Database.

Here, the provider is database, and the input is hello.

var params clob; 
exec :params := '{"provider":"database", "model":"doc_model"}';

select dbms_vector_chain.utl_to_embedding('hello', json(:params)) from 
dual;

For complete example, see Convert Text String to Embedding Within Oracle Database.

• End-to-end examples:

To run various end-to-end example scenarios using UTL_TO_EMBEDDING, see Generate
Embedding.

UTL_TO_EMBEDDINGS:

• Text to vector using in-database embedding model:

The following example uses UTL_TO_EMBEDDINGS to generate an array of embeddings by
calling an ONNX format embedding model (doc_model) loaded into Oracle Database.

Here, the provider is database, and the input is a PDF document stored in the
documentation_tab table. As you can see, you first use UTL_TO_CHUNKS to split the data
into smaller chunks before passing in to UTL_TO_EMBEDDINGS.

CREATE TABLE doc_chunks as
(select dt.id doc_id, et.embed_id, et.embed_data, 
to_vector(et.embed_vector) embed_vector
 from
   documentation_tab dt,
   dbms_vector_chain.utl_to_embeddings(
       
dbms_vector_chain.utl_to_chunks(dbms_vector_chain.utl_to_text(dt.data), 
json('{"normalize":"all"}')),
       json('{"provider":"database", "model":"doc_model"}')) t,
   JSON_TABLE(t.column_value, '$[*]' COLUMNS (embed_id NUMBER PATH 
'$.embed_id', embed_data VARCHAR2(4000) PATH '$.embed_data', embed_vector 
CLOB PATH '$.embed_vector')) et
);
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For complete example, see SQL Quick Start Using a Vector Embedding Model Uploaded
into the Database.

• End-to-end examples:

To run various end-to-end example scenarios using UTL_TO_EMBEDDINGS, see Perform
Chunking With Embedding.

UTL_TO_GENERATE_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT chainable utility function to generate a
text response for a given prompt or an image, by accessing third-party text generation models.

Purpose

To communicate with Large Language Models (LLMs) through natural language conversations.
You can generate a textual answer, description, or summary for prompts and images, given as
input to LLM-powered chat interfaces.

• Prompt to Text:

A prompt can be an input text string, such as a question that you ask an LLM. For
example, "What is Oracle Text?". A prompt can also be a command, such as "Summarize
the following ...", "Draft an email asking for ...", or "Rewrite the
following ...", and can include results from a search. The LLM responds with a textual
answer or description based on the specified task in the prompt.

For this operation, this API makes a REST call to your chosen remote third-party provider
(Cohere, Generative AI, Google AI, Hugging Face, OpenAI, or Vertex AI) or local third-
party provider (Ollama).

• Image to Text:

You can also prompt with a media file, such as an image, to extract text from pictures or
photos. You supply a text question as the prompt (such as "What is this image about?"
or "How many birds are there in this painting?") along with the image. The LLM
responds with a textual analysis or description of the contents of the image.

For this operation, this API makes a REST call to your chosen remote third-party provider
(Google AI, Hugging Face, OpenAI, or Vertex AI) or local third-party provider (Ollama).

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.
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Syntax

This function accepts the input as CLOB containing text data (for textual prompts) or as BLOB
containing media data (for media files such as images). It then processes this information to
generate a new CLOB containing the generated text.

• Prompt to Text:

DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT (
        DATA          IN CLOB,
        PARAMS        IN JSON default NULL
) return CLOB;

• Image to Text:

DBMS_VECTOR_CHAIN.UTL_TO_GENERATE_TEXT(
          TEXT_DATA      IN CLOB,
          MEDIA_DATA     IN BLOB,
          MEDIA_TYPE     IN VARCHAR2 default 'image/jpeg',
          PARAMS         IN JSON default NULL
) return CLOB;

DATA and TEXT_DATA

Specify the textual prompt as CLOB for the DATA or TEXT_DATA clause.

Note:

Hugging Face uses an image captioning model that does not require a prompt, when
giving an image as input. If you input a prompt along with an image, then the prompt
will be ignored.

MEDIA_DATA

Specify the BLOB file, such as an image or a visual PDF file.

MEDIA_TYPE

Specify the image format for the given image or visual PDF file (BLOB file) in one of the
supported image data MIME types. For example:

• For PNG: image/png
• For JPEG: image/jpeg
• For PDF: application/pdf

Note:

For a complete list of the supported image formats, refer to your third-party provider's
documentation.
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PARAMS

Specify the following input parameters in JSON format, depending on the service provider that
you want to access for text generation:

{
  "provider"        : "<AI service provider>",
  "credential_name" : "<credential name>",  
  "url"             : "<REST endpoint URL for text generation service>",
  "model"           : "<text generation model name>",
  "transfer_timeout": <maximum wait time for the request to complete>,
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter value>"
}

Table 12-26    UTL_TO_GENERATE_TEXT Parameter Details

Parameter Description

provider Supported REST provider that you want to access to generate text.

Specify one of the following values:

For CLOB input:

• cohere
• googleai
• huggingface
• ocigenai
• openai
• vertexai
For BLOB input:

• googleai
• huggingface
• openai
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to your provider
for making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL helper function to create and store a
credential, and then refer to the credential name here. See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in Supported
Third-Party Provider Operations and Endpoints.

model Name of the third-party text generation model in the form:

schema.model_name
If the model name is not schema-qualified, then the schema of the procedure invoker
is used.

Note: For Generative AI, all the supported third-party models are listed in Supported
Third-Party Provider Operations and Endpoints.

transfer_timeout Maximum time to wait for the request to complete.

The default value is 60 seconds. You can increase this value for busy web servers.
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Table 12-26    (Cont.) UTL_TO_GENERATE_TEXT Parameter Details

Parameter Description

max_count Maximum number of times the API can be called for a given third-party provider.

When set to an integer n, max_count stops the execution of the API for the given
provider beyond n times. This prevents accidental calling of a third-party over some
limit, for example to avoid surpassing the service amount that you have purchased.

Additional third-party provider parameters:

Optionally, specify additional provider-specific parameters.

Table 12-27    Additional REST Provider Parameter Details

Parameter Description

max_tokens Maximum number of tokens in the output text.

temperature Degree of randomness used when generating the output text, in the range of
0.0-5.0.

To generate the same output for a prompt, use 0. To generate a random new text for
that prompt, increase the temperature.

Note: Start with the temperature set to 0. If you do not require random results, a
recommended temperature value is between 0 and 1. A higher value is not
recommended because a high temperature may produce creative text, which might
also include hallucinations.

topP Probability of tokens in the output, in the range of 0.0–1.0.

A lower value provides less random responses and a higher value provides more
random responses.

candidateCount Number of response variations to return, in the range of 1-4.

maxOutputTokens Maximum number of tokens to generate for each response.

Let us look at some example configurations for all third-party providers:

Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on additional parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

Cohere example:

{
  "provider"       : "cohere", 
  "credential_name": "COHERE_CRED",
  "url"            : "https://api.cohere.example.com/chat",
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  "model"          : "command"
}

Generative AI example:

Note:

For Generative AI, if you want to pass any additional REST provider-specific
parameters, then you must enclose those in chatRequest.

{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-example.com/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens"    : 256
                     }
}

Google AI example:

{
  "provider"        : "googleai",
  "credential_name" : "GOOGLEAI_CRED",
  "url"             : "https://googleapis.example.com/models/",
  "model"           : "gemini-pro:generateContent"
}

Hugging Face example:

{
  "provider"        : "huggingface",
  "credential_name" : "HF_CRED",
  "url"             : "https://api.huggingface.example.com/models/",
  "model"           : "gpt2"
}

Ollama example:

{
  "provider"       : "ollama", 
  "host"           : "local", 
  "url"            : "http://localhost:11434/api/generate", 
  "model"          : "phi3:mini"
}
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OpenAI example:

{
  "provider"        : "openai",
  "credential_name" : "OPENAI_CRED",
  "url"             : "https://api.openai.example.com",
  "model"           : "gpt-4o-mini",
  "max_tokens"      : 60,
  "temperature"     : 1.0
}

Vertex AI example:

{
  "provider"         : "vertexai",
  "credential_name"  : "VERTEXAI_CRED",
  "url"              : "https://googleapis.example.com/models/",
  "model"            : "gemini-1.0-pro:generateContent",
  "generation_config": {
                        "temperature"    : 0.9,
                        "topP"           : 1,
                        "candidateCount" : 1,
                        "maxOutputTokens": 256
                       }
}

Examples

• Prompt to Text:

The following statements generate a text response by making a REST call to Generative
AI. The prompt given here is "What is Oracle Text?".

Here, the cohere.command-r-16k and meta.llama-3.1-70b-instruct models are used. You
can replace the model value with any other supported model that you want to use with
Generative AI, as listed in Supported Third-Party Provider Operations and Endpoints.

Using the cohere.command-r-16k model:

-- select example

var params clob;
exec :params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',
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 json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
  "provider"       : "ocigenai",
  "credential_name": "OCI_CRED",
  "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
  "model"          : "cohere.command-r-16k",
  "chatRequest"    : {
                      "maxTokens": 256
                     }
}';

  output := dbms_vector_chain.utl_to_generate_text(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

Using the meta.llama-3.1-70b-instruct model:

-- select example

var params clob;
exec :params := '
{
   "provider"       : "ocigenai",
   "credential_name": "OCI_CRED",
   "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
   "model"          : "meta.llama-3.1-70b-instruct",
   "chatRequest"    : {
                       "topK" : 1
                      }
}';

select dbms_vector_chain.utl_to_generate_text(
 'What is Oracle Text?',
 json(:params)) from dual;
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-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'What is Oracle Text?';

  params := '
{
   "provider"       : "ocigenai",
   "credential_name": "OCI_CRED",
   "url"            : "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/chat",
   "model"          : "meta.llama-3.1-70b-instruct",
   "chatRequest"    : {
                       "topK" : 1
                      }
}';

  output := dbms_vector_chain.utl_to_generate_text(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

End-to-end examples:

To run end-to-end example scenarios, see Generate Text Response.

• Image to Text:

The following statements generate a text response by making a REST call to OpenAI.
Here, the input is an image (sample_image.jpeg) along with the prompt "Describe this
image?".

-- select example

var input clob;
var media_data blob;
var media_type clob;
var params clob;

begin
  :input := 'Describe this image';
  :media_data := load_blob_from_file('DEMO_DIR', 'sample_image.jpeg');
  :media_type := 'image/jpeg';
  :params := '
{
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  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60
}';
end;
/

select 
dbms_vector_chain.utl_to_generate_text(:input, :media_data, :media_type, 
json(:params));

-- PL/SQL example

declare
  input clob;
  media_data blob;
  media_type varchar2(32);
  params clob;
  output clob;

begin
  input := 'Describe this image';
  media_data := load_blob_from_file('DEMO_DIR', 'image_file');
  media_type := 'image/jpeg';
  params := '
{
  "provider"       : "openai",
  "credential_name": "OPENAI_CRED",
  "url"            : "https://api.openai.com/v1/chat/completions",
  "model"          : "gpt-4o-mini",
  "max_tokens"     : 60
}';

  output := dbms_vector_chain.utl_to_generate_text(
    input, media_data, media_type, json(params));
  dbms_output.put_line(output);

  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
  if media_data is not null then
    dbms_lob.freetemporary(media_data);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

End-to-end examples:

To run end-to-end example scenarios, see Describe Image Content.
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UTL_TO_SUMMARY
Use the DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY chainable utility function to generate a summary
for textual documents.

A summary is a short and concise extract with key features of a document that best represents
what the document is about as a whole. A summary can be free-form paragraphs or bullet
points based on the format that you specify.

Purpose

To perform a text-to-summary transformation by accessing either Oracle Database or a third-
party service provider:

• Oracle Database as the service provider (default setting):

Uses the in-house implementation with Oracle Database, where Oracle Text is internally
used to extract a summary (gist) from your document using the Oracle Text PL/SQL
procedure CTX_DOC.GIST.

• Third-party summarization model:

Makes a REST API call to your chosen remote service provider (Cohere, Generative AI,
Google AI, Hugging Face, OpenAI, or Vertex AI) or local service provider (Ollama).

Note:

Currently, UTL_TO_SUMMARY does not work for Generative AI because the model and
summary endpoint supported for Generative AI have been retired. It will be available
in a subsequent release.

WARNING:

Certain features of the database may allow you to access services offered separately
by third-parties, for example, through the use of JSON specifications that facilitate
your access to REST APIs.

Your use of these features is solely at your own risk, and you are solely responsible
for complying with any terms and conditions related to use of any such third-party
services. Notwithstanding any other terms and conditions related to the third-party
services, your use of such database features constitutes your acceptance of that risk
and express exclusion of Oracle's responsibility or liability for any damages resulting
from such access.

Syntax

DBMS_VECTOR_CHAIN.UTL_TO_SUMMARY (
    DATA          IN CLOB,
    PARAMS        IN JSON default NULL
) return CLOB;
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DATA

This function accepts the input data type in plain text as CLOB.

It returns a summary of the input document also as CLOB.

PARAMS

Specify summary parameters in JSON format, depending on the service provider that you want
to use for document summarization.

If using Oracle Database as the provider:

{
  "provider"     : "database",
  "glevel"       : "<summary format>",
  "numParagraphs": <number in the range 1-16>,
  "maxPercent"   : <number in the range 1-100>,
  "num_themes"   : <number in the range 1-50>,
  "language"     : "<name of the language>"
}

Table 12-28    Database Provider Parameter Details

Parameter Description

provider Specify database (default setting) to access Oracle Database as the provider.
Leverages the document gist or summary generated by Oracle Text.

glevel Format to display the summary:

• SENTENCE | S: As a list of sentences

• PARAGRAPH | P: In a free-form paragraph

numParagraphs Maximum number of document paragraphs (or sentences) selected for the summary.
The default value is 16.

The numParagraphs parameter is used only when this parameter yields a smaller
summary size than the summary size yielded by the maxPercent parameter, because
the function always returns the smallest size summary.

maxPercent Maximum number of document paragraphs (or sentences) selected for the summary,
as a percentage of the total paragraphs (or sentences) in the document. The default
value is 10.

The maxPercent parameter is used only when this parameter yields a smaller
summary size than the summary size yielded by the numParagraphs parameter,
because the function always returns the smallest size summary.

num_themes Number of theme summaries to produce. For example, if you specify 10, then this
function returns the top 10 theme summaries. If you specify 0 or NULL, then this
function returns all themes in a document.

The default value is 50. If the document contains more than 50 themes, only the top
50 themes show conceptual hierarchy.

language Language name of your summary text, as listed in Supported Languages and Data
File Locations.
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For example:

{
  "provider"          : "database",
  "glevel"            : "sentence",
  "numParagraphs"     : 1
}

If using a third-party provider:

Set the following parameters along with additional summarization parameters specific to your
provider:

{
  "provider"          : "<AI service provider>", 
  "credential_name"   : "<credential name>",
  "url"               : "<REST endpoint URL for summarization service>", 
  "model"             : "<REST provider summarization model name>",
  "transfer_timeout"  : <maximum wait time for the request to complete>,
  "max_count": "<maximum calls to the AI service provider>",
  "<additional REST provider parameter>": "<REST provider parameter value>"
}

Table 12-29    Third-Party Provider Parameter Details

Parameter Description

provider Third-party service provider that you want to access to get the summary. A REST call
is made to the specified provider to access its text summarization model.

Specify one of the following values:

• cohere
• googleai
• huggingface
• ocigenai
• openai
• vertexai

credential_name Name of the credential in the form:

schema.credential_name
A credential name holds authentication credentials to enable access to your provider
for making REST API calls.

You need to first set up your credential by calling the
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL helper function to create and store a
credential, and then refer to the credential name here. See CREATE_CREDENTIAL.

url URL of the third-party provider endpoint for each REST call, as listed in Supported
Third-Party Provider Operations and Endpoints.

model Name of the third-party text summarization model in the form:

schema.model_name
If the model name is not schema-qualified, then the schema of the procedure invoker
is used.

Note: For Generative AI, you must specify schema.model_name. All the third-party
models supported for Generative AI are listed in Supported Third-Party Provider
Operations and Endpoints.
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Table 12-29    (Cont.) Third-Party Provider Parameter Details

Parameter Description

transfer_timeout Maximum time to wait for the request to complete.

The default value is 60 seconds. You can increase this value for busy web servers.

max_count Maximum number of times the API can be called for a given third-party provider.

When set to an integer n, max_count stops the execution of the API for the given
provider beyond n times. This prevents accidental calling of a third-party over some
limit, for example to avoid surpassing the service amount that you have purchased.

Additional third-party provider parameters:

Optionally, specify additional provider-specific parameters.

Table 12-30    Additional REST Provider Parameter Details

Parameter Description

length Approximate length of the summary text:

• SHORT: Roughly up to 2 sentences

• MEDIUM: Between 3 and 5 sentences

• LONG: 6 or more sentences

• AUTO: The model chooses a length based on the input size

Note: For Generative AI, you must enter this value in uppercase.

format Format to display the summary:

• PARAGRAPH: In a free-form paragraph

• BULLETS: In bullet points

Note: For Generative AI, you must enter this value in uppercase.

temperature Degree of randomness used when generating output text, in the range of 0.0-5.0.

To generate the same output for a prompt, use 0. To generate a random new text for
that prompt, increase the temperature.

Default temperature is 1 and the maximum temperature is 5.

Note: To summarize a text, start with the temperature set to 0. If you do not require
random results, a recommended temperature value is 0.2 for Generative AI and
between 0 and 1 for Cohere. Use a higher value if for example you plan to perform a
selection of the various summaries afterward. Do not use a high temperature for
summarization because a high temperature encourages the model to produce creative
text, which might also include hallucinations.

extractiveness How much to reuse the input in the summary:

• LOW: Summaries with low extractiveness tend to paraphrase.

• HIGH: Summaries with high extractiveness lean toward reusing sentences
verbatim.

Note: For Generative AI, you must enter this value in uppercase.

max_tokens Maximum number of tokens in the output text.

topP Probability of tokens in the output, in the range of 0.0–1.0.

A lower value provides less random responses and a higher value provides more
random responses.

candidateCount Number of response variations to return, in the range of 1-4.

maxOutputTokens Maximum number of tokens to generate for each response.
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Note:

When specifying the length, format, and extractiveness parameters for Generative
AI, ensure to enter the values in uppercase letters.

Let us look at some example configurations for all third-party providers:

Important:

• The following examples are for illustration purposes. For accurate and up-to-date
information on additional parameters to use, refer to your third-party provider's
documentation.

• For a list of all supported REST endpoint URLs, see Supported Third-Party
Provider Operations and Endpoints.

Cohere example:

{
  "provider"          : "cohere",
  "credential_name"   : "COHERE_CRED",
  "url"               : "https://api.cohere.example.com/summarize",
  "model"             : "command",
  "length"            : "medium",
  "format"            : "paragraph",
  "temperature"       : 1.0
}

Generative AI example:

{
 "provider"           : "ocigenai",
 "credential_name"    : "OCI_CRED",
 "url"                : "https://generativeai.oci.example.com/summarizeText",
 "model"              : "cohere.command-r-16k",
 "length"             : "MEDIUM",
 "format"             : "PARAGRAPH"
}

Google AI example:

{
  "provider"          : "googleai",
  "credential_name"   : "GOOGLEAI_CRED",
  "url"               : "https://googleapis.example.com/models/",
  "model"             : "gemini-pro:generateContent",
  "generation_config" : {
    "temperature"     : 0.9,
    "topP"            : 1,
    "candidateCount"  : 1,
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    "maxOutputTokens" : 256
  }
}

Hugging Face example:

{
  "provider"          : "huggingface",
  "credential_name"   : "HF_CRED",
  "url"               : "https://api.huggingface.example.co/models/",
  "model"             : "facebook/bart-large-cnn"
}

Ollama example:

{
  "provider"          : "ollama", 
  "host"              : "local", 
  "url"               : "http://localhost:11434/api/generate", 
  "model"             : "phi3:mini"
}

OpenAI example:

{
  "provider"          : "openai",
  "credential_name"   : "OPENAI_CRED",
  "url"               : "https://api.openai.example.com",
  "model"             : "gpt-4o-mini",
  "max_tokens"        : 256,
  "temperature"       : 1.0
}

Vertex AI example:

{
  "provider"          : "vertexai",
  "credential_name"   : "VERTEXAI_CRED",
  "url"               : "https://googleapis.example.com/models/",
  "model"             : "gemini-1.0-pro:generateContent",
  "generation_config" : {
    "temperature"     : 0.9,
    "topP"            : 1,
    "candidateCount"  : 1,
    "maxOutputTokens" : 256
  }
}

Examples

• Generate summary using Oracle Database:
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This statement specifies database as the provider. Here, the Oracle Text PL/SQL
procedure CTX_DOC.GIST is internally called to generate a summary of an extract on
"Transactions".

-- select example

set serveroutput on

var params clob;
begin
  :params := '
{
  "provider": "database",
  "glevel": "sentence",
  "numParagraphs": 1
}';
end;
/

select dbms_vector_chain.utl_to_summary(
 'A transaction is a logical, atomic unit of work that contains one or 
more SQL statements.  An RDBMS must be able to group SQL statements so 
that they are either all committed, which means they are applied to the 
database, or all rolled back, which means they are undone.  An 
illustration of the need for transactions is a funds transfer from a 
savings account to a checking account. The transfer consists of the 
following separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or fail 
as a unit. For example, if a hardware failure prevents a statement in the 
transaction from executing, then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If you 
perform an atomic operation that updates several files, and if the system 
fails halfway through, then the files will not be consistent. In contrast, 
a transaction moves an Oracle database from one consistent state to 
another. The basic principle of a transaction is "all or nothing": an 
atomic operation succeeds or fails as a whole.',
 json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'A transaction is a logical, atomic unit of work that contains 
one or more SQL statements.  An RDBMS must be able to group SQL statements 
so that they are either all committed, which means they are applied to the 
database, or all rolled back, which means they are undone.  An 
illustration of the need for transactions is a funds transfer from a 
savings account to a checking account. The transfer consists of the 
following separate operations:
    1. Decrease the savings account.
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    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or fail 
as a unit. For example, if a hardware failure prevents a statement in the 
transaction from executing, then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If you 
perform an atomic operation that updates several files, and if the system 
fails halfway through, then the files will not be consistent. In contrast, 
a transaction moves an Oracle database from one consistent state to 
another. The basic principle of a transaction is "all or nothing": an 
atomic operation succeeds or fails as a whole.';

  params := '
  {
   "provider": "database",
   "glevel": "sentence",
   "numParagraphs": 1
  }';

  output := dbms_vector_chain.utl_to_summary(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

• Generate summary using Generative AI:

These statements generate a summary of an extract on "Transactions" by accessing
Generative AI as the provider.

Here, the cohere.command-r-16k model is used for the summarization operation. You can
replace the model value with any other supported model that you want to use with
Generative AI, as listed in Supported Third-Party Provider Operations and Endpoints.

-- select example

var params clob;
begin
  :params := '
{  
 "provider": "ocigenai", 
 "credential_name": "OCI_CRED", 
 "url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/
20231130/actions/chat", 
 "model": "cohere.command-r-16k",
 "temperature": "0.0",
 "extractiveness": "LOW"
}';
end;
/
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select dbms_vector_chain.utl_to_summary(
 'A transaction is a logical, atomic unit of work that contains one or 
more SQL statements.  An RDBMS must be able to group SQL statements so 
that they are either all committed, which means they are applied to the 
database, or all rolled back, which means they are undone.  An 
illustration of the need for transactions is a funds transfer from a 
savings account to a checking account. The transfer consists of the 
following separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or fail 
as a unit. For example, if a hardware failure prevents a statement in the 
transaction from executing, then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If you 
perform an atomic operation that updates several files, and if the system 
fails halfway through, then the files will not be consistent. In contrast, 
a transaction moves an Oracle database from one consistent state to 
another. The basic principle of a transaction is "all or nothing": an 
atomic operation succeeds or fails as a whole.',
 json(:params)) from dual;

-- PL/SQL example

declare
  input clob;
  params clob;
  output clob;
begin
  input := 'A transaction is a logical, atomic unit of work that contains 
one or more SQL statements.  An RDBMS must be able to group SQL statements 
so that they are either all committed, which means they are applied to the 
database, or all rolled back, which means they are undone.  An 
illustration of the need for transactions is a funds transfer from a 
savings account to a checking account. The transfer consists of the 
following separate operations:
    1. Decrease the savings account.
    2. Increase the checking account.
    3. Record the transaction in the transaction journal.
    Oracle Database guarantees that all three operations succeed or fail 
as a unit. For example, if a hardware failure prevents a statement in the 
transaction from executing, then the other statements must be rolled back.
    Transactions set Oracle Database apart from a file system. If you 
perform an atomic operation that updates several files, and if the system 
fails halfway through, then the files will not be consistent. In contrast, 
a transaction moves an Oracle database from one consistent state to 
another. The basic principle of a transaction is "all or nothing": an 
atomic operation succeeds or fails as a whole.';

  params := '
  {
   "provider": "ocigenai",
   "credential_name": "OCI_CRED",
   "url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/
20231130/actions/chat",
   "model": "cohere.command-r-16k",
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   "length": "MEDIUM",
   "format": "PARAGRAPH",
   "temperature": 1.0
  }';

  output := dbms_vector_chain.utl_to_summary(input, json(params));
  dbms_output.put_line(output);
  if output is not null then
    dbms_lob.freetemporary(output);
  end if;
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

• End-to-end examples:

To run end-to-end example scenarios using this function, see Generate Summary.

UTL_TO_TEXT
Use the DBMS_VECTOR_CHAIN.UTL_TO_TEXT chainable utility function to convert an input
document (for example, PDF, DOC, JSON, XML, or HTML) to plain text.

Purpose

To perform a file-to-text transformation by using the Oracle Text component (CONTEXT) of
Oracle Database.

Syntax

DBMS_VECTOR_CHAIN.UTL_TO_TEXT (
    DATA          IN CLOB | BLOB,
    PARAMS        IN JSON default NULL
) return CLOB;

DATA

This function accepts the input data type as CLOB or BLOB. It can read documents from a remote
location or from files stored locally in the database tables.

It returns a plain text version of the document as CLOB.

Oracle Text supports around 150 file types. For a complete list of all the supported document
formats, see Oracle Text Reference.

PARAMS

Specify the following input parameter in JSON format:

{ 
    "plaintext" : "true or false",
    "charset"   : "UTF8" 
}

Chapter 12
DBMS_VECTOR_CHAIN

12-118



Table 12-31    Parameter Details

Parameter Description

plaintext Plain text output.

The default value for this parameter is true, that is, by default the output format is
plain text.

If you do not want to return the document as plain text, then set this parameter to
false.

charset Character set encoding.

Currently, only UTF8 is supported.

Example

select DBMS_VECTOR_CHAIN.UTL_TO_TEXT (
    t.blobdata, 
     json('{
            "plaintext": "true",
            "charset"  : "UTF8" 
           }')
) from tab t;

End-to-end example:

To run an end-to-end example scenario using this function, see Convert File to Text to Chunks
to Embeddings Within Oracle Database.

Supported Languages and Data File Locations
These are the supported languages for which language data files are distributed by default in
the specified directories.

Language Name Abbreviation Data File

AFRIKAANS af ctx/data/eos/dreosaf.txt
AMERICAN us ctx/data/eos/dreosus.txt
ARABIC ar ctx/data/eos/dreosar.txt
BASQUE eu ctx/data/eos/dreoseu.txt
BELARUSIAN be ctx/data/eos/dreosbe.txt
BRAZILIAN PORTUGUESE ptb ctx/data/eos/dreosptb.txt
BULGARIAN bg ctx/data/eos/dreosbg.txt
CANADIAN FRENCH frc ctx/data/eos/dreosfrc.txt
CATALAN ca ctx/data/eos/dreosca.txt
CROATIAN hr ctx/data/eos/dreoshr.txt
CYRILLIC SERBIAN csr ctx/data/eos/dreoscsr.txt
CZECH cs ctx/data/eos/dreoscs.txt
DANISH dk ctx/data/eos/dreosdk.txt
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Language Name Abbreviation Data File

DARI prs ctx/data/eos/dreosprs.txt
DUTCH nl ctx/data/eos/dreosnl.txt
EGYPTIAN eg ctx/data/eos/dreoseg.txt
ENGLISH gb ctx/data/eos/dreosgb.txt
ESTONIAN et ctx/data/eos/dreoset.txt
FINNISH sf ctx/data/eos/dreossf.txt
FRENCH f ctx/data/eos/dreosf.txt
GALICIAN ga ctx/data/eos/dreosga.txt
GERMAN d ctx/data/eos/dreosd.txt
GERMAN DIN din ctx/data/eos/dreosdin.txt
GREEK el ctx/data/eos/dreosel.txt
HEBREW iw ctx/data/eos/dreosiw.txt
HINDI hi ctx/data/eos/dreoshi.txt
HUNGARIAN hu ctx/data/eos/dreoshu.txt
ICELANDIC is ctx/data/eos/dreosis.txt
INDONESIAN in ctx/data/eos/dreosin.txt
ITALIAN i ctx/data/eos/dreosi.txt
JAPANESE ja ctx/data/eos/dreosja.txt
KOREAN ko ctx/data/eos/dreosko.txt
LATIN AMERICAN SPANISH esa ctx/data/eos/dreosesa.txt
LATIN BOSNIAN lbs ctx/data/eos/dreoslbs.txt
LATIN SERBIAN lsr ctx/data/eos/dreoslsr.txt
LATVIAN lv ctx/data/eos/dreoslv.txt
LITHUANIAN lt ctx/data/eos/dreoslt.txt
MACEDONIAN mk ctx/data/eos/dreosmk.txt
MALAY ms ctx/data/eos/dreosms.txt
MEXICAN SPANISH esm ctx/data/eos/dreosesm.txt
NORWEGIAN n ctx/data/eos/dreosn.txt
NYNORSK nn ctx/data/eos/dreosnn.txt
PERSIAN fa ctx/data/eos/dreosfa.txt
POLISH pl ctx/data/eos/dreospl.txt
PORTUGUESE pt ctx/data/eos/dreospt.txt
ROMANIAN ro ctx/data/eos/dreosro.txt
RUSSIAN ru ctx/data/eos/dreosru.txt
SIMPLIFIED CHINESE zhs ctx/data/eos/dreoszhs.txt
SLOVAK sk ctx/data/eos/dreossk.txt
SLOVENIAN sl ctx/data/eos/dreossl.txt
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Language Name Abbreviation Data File

SPANISH e ctx/data/eos/dreose.txt
SWEDISH s ctx/data/eos/dreoss.txt
THAI th ctx/data/eos/dreosth.txt
TRADITIONAL CHINESE zht ctx/data/eos/dreoszht.txt
TURKISH tr ctx/data/eos/dreostr.txt
UKRAINIAN uk ctx/data/eos/dreosuk.txt
URDU ur ctx/data/eos/dreosur.txt

Related Topics

• CREATE_LANG_DATA
Use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper procedure to load your
own language data file into the database.

DBMS_HYBRID_VECTOR
The DBMS_HYBRID_VECTOR package contains a JSON-based query API SEARCH, which lets you
query against hybrid vector indexes.

• SEARCH
Use the DBMS_HYBRID_VECTOR.SEARCH PL/SQL function to run textual queries, vector
similarity queries, or hybrid queries against hybrid vector indexes.

• GET_SQL
Use the DBMS_HYBRID_VECTOR.GET_SQL PL/SQL function to return the internal SQL query
that is generated from the parameters.

• SEARCHPIPELINE
Use the standard table function DBMS_HYBRID_VECTOR.SEARCHPIPELINE to return a pipeline
of row records.

SEARCH
Use the DBMS_HYBRID_VECTOR.SEARCH PL/SQL function to run textual queries, vector similarity
queries, or hybrid queries against hybrid vector indexes.

Purpose

To search by vectors and keywords. This function lets you perform the following tasks:

• Facilitate a combined (hybrid) query of textual documents and vectorized chunks:

You can query a hybrid vector index in multiple vector and keyword search combinations
called search modes, as described in Understand Hybrid Search. This API accepts a
JSON specification for all query parameters.

• Fuse and reorder the search results:

The search results of a hybrid query are fused into a unified result set as CLOB using the
specified fusion set operator, and reordered by a combined score using the specified
scoring algorithm.

• Run a default query for a simplified search experience:
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The minimum input parameters required are the hybrid_index_name and search_text.
The same text string is used to query against a vectorized chunk index and a text
document index.

Syntax

DBMS_HYBRID_VECTOR.SEARCH(
   json(
     '{  "hybrid_index_name"     :  
"<hybrid_vector_index_name>",                  
         "search_text"           :  "<query string for keyword-and-semantic 
search>",                   
         "search_fusion"         :  one of these values : "INTERSECT | UNION 
| TEXT_ONLY | VECTOR_ONLY | MINUS_TEXT | 
                                         MINUS_VECTOR | RERANK",      
         "search_scorer"         :  one of these values : "RRF | RSF",    
         "vector":
           {
            "search_text"             :  "<query string for semantic 
search>",            
            "search_vector"           :  "<vector_embedding>",           
            "search_mode"             :  one of thse values : "DOCUMENT | 
CHUNK",                 
            "aggregator"              :  one of these values : "COUNT | SUM | 
MIN | MAX | AVG | MEDIAN | BONUSMAX | WINAVG | 
                                         ADJBOOST | MAXAVGMED",  
            "result_max"              :  <maximum number of vector results>,
            "score_weight"            :  <weight of vector score for RSF>,
            "rank_penalty"            :  <penalty of vector ranking for RRF>, 
            "inpath"                  :  <an array of valid JSON paths>,
            "accuracy"                :  <target accuracy for semantic 
search>,
            "index_probes"            :  <neighbor partitions for semantic 
search>,
            "index_efsearch"          :  <efsearch for semantic search>,
            "filter_type"             :  one of these values : "IN_WO | IN_W 
| PRE_WO | PRE_W | POST_WO | DEFAULT"  
           },
         "text":
           {
            "contains"                :  "<query string for keyword 
search>",    
            "search_text"             :  "<alternative text to use to 
construct a contains query automatically>",  
            "json_textcontains"       :  <an array of valid JSON path and a 
query string>,   
            "score_weight"            :  <weight of text score for RSF>,
            "rank_penalty"            :  <penalty of text ranking for RRF>,
            "result_max:              :  <maximum number of document results>,
            "inpath"                  :  <array of valid JSON paths>      
           },
         "filter_by":
           {
            "op"                      :  one of these values: "< | > | <= | 
>= | = | != | ^- | <> | LIKE | LIKEC | LIKE2 | LIKE4 |
                                         REGEXP_LIKE | BETWEEN | EXISTS | 
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INSTR | INSTRC | INSTR2 | INSTR4 | STSTR | STSTR2 | STSTR4 |
                                         STSTRB | STSTRC | <ANY | >ANY | 
<=ANY | >=ANY | =ANY | !=ANY | <SOME | >SOME | 
                                         <=SOME | >=SOME | =SOME | !=SOME | 
<ALL | >ALL | <=ALL | >=ALL | =ALL | !=ALL | IN |
                                         AND | OR | NOT | NOTOR | 
NOTAND",                               
            "type"                    :  one of these values : "number | 
string | date | timestamp", 
            "col"                     :  "<base table column name>",
            "path"                    :  "<JSON path dot notation within a 
base table JSON column>", 
            "func"                    :  one of these values : "ABS | FLOOR | 
LENGTH | CEILING | UPPER | LOWER | TO_BOOLEAN | 
                                         TO_DATE | TO_DOUBLE | 
TO_BINARYDOUBLE | TO_NUMBER | TO_CHAR | TO_TIMESTAMP", 
            "args"                    :  <an array of arguments to the 
operator>                        
           }
         "return":
           {
            "topN"                    :  
<topN_value>,                               
            "values"                  :  one or more of these values : "rowid 
| score | vector_score | text_score | vector_rank | 
                                         text_rank | chunk_text | chunk_id | 
paths",                                
            "format"                  :  one of these values : "JSON | 
XML"                              
           }
     }'
  )
)

Note:

This API supports two constructs of search. One where you specify a single
search_text field for both semantic search and keyword search (default setting).
Another where you specify separate search_text and contains query fields using
vector and text sub-elements for semantic search and keyword search,
respectively. You cannot use both of these search constructs in one query.

hybrid_index_name

Specify the name of the hybrid vector index to use.

For information on how to create a hybrid vector index if not already created, see Manage
Hybrid Vector Indexes.

search_text

Specify a search text string (your query input) for both semantic search and keyword search.
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The same text string is used for a keyword query on document text index (by converting the
search_text into a CONTAINS ACCUM operator syntax) and a semantic query on vectorized
chunk index (by vectorizing or embedding the search_text for a VECTOR_DISTANCE search).

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "search_text"       : "C, Python"
          }'))
FROM DUAL;

search_fusion

Specify a fusion sort operator to define what you want to retain from the combined set of
keyword-and-semantic search results.

Note:

This search fusion operation is applicable only to non-pure hybrid search cases.
Vector-only and text-only searches do not fuse any results.

Parameter Description

INTERSECT Returns only the rows that are common to both text search results and vector search results.

Score condition: text_score > 0 AND vector_score > 0
UNION (default) Combines all distinct rows from both text search results and vector search results.

Score condition: text_score > 0 OR vector_score > 0
TEXT_ONLY Returns all distinct rows from text search results plus the ones that are common to both text

search results and vector search results. Thus, the fused results contain the text search
results that appear in text search, including those that appear in both.

Score condition: text_score > 0
VECTOR_ONLY Returns all distinct rows from vector search results plus the ones that are common to both

text search results and vector search results. Thus, the fused results contain the vector
search results that appear in vector search, including those that appear in both.

Score condition: vector_score > 0
MINUS_TEXT Returns all distinct rows from vector search results minus the ones that are common to both

text search results and vector search results. Thus, the fused results contain the vector
search results that appear in vector search, excluding those that appear in both.

Score condition: text_score = 0
MINUS_VECTOR Returns all distinct rows from text search results minus the ones that are common to both

text search results and vector search results. Thus, the fused results contain the text search
results that appear in text search, excluding those that appear in both.

Score condition: vector_score = 0
RERANK Returns all distinct rows from text search ordered by the aggregated vector score of their

respective vectors.

There is no score condition for this field since the text search is followed by the use of the
aggregated document vector scores.
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For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name"     : "my_hybrid_idx",
            "search_fusion"         : "UNION",
            "vector":
                    { "search_text" : "leadership experience" },
             "text":
                    { "contains"    : "C and Python" }
          }'))
FROM DUAL;

search_scorer

Specify a method to evaluate the combined "fusion" search scores from both keyword and
semantic search results.

• RSF (default) to use the Relative Score Fusion (RSF) algorithm

• RRF to use the Reciprocal Rank Fusion (RRF) algorithm

For a deeper understanding of how these algorithms work in hybrid search modes, see 
Understand Hybrid Search.

For example:

With a single search text string for hybrid search:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_text"       : "C, Python",
         "search_scorer"     : "rsf"
      }'))
FROM DUAL;

With separate vector and text search strings:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_scorer"     : "rsf",
         "vector":
          { "search_text"    : "leadership experience" },
         "text":
          { "contains"       : "C and Python" }
      }'))
FROM DUAL;

vector

Specify query parameters for semantic search against the vector index part of your hybrid
vector index:

• search_text: Search text string (query text).
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This string is converted into a query vector (embedding), and is used in a VECTOR_DISTANCE
query to search against the vectorized chunk index.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "vector":
                    { "search_text" : "C, Python" }
          }'))
FROM DUAL;

• search_vector: Vector embedding (query vector).

This embedding is directly used in a VECTOR_DISTANCE query to search against the
vectorized chunk index.

Note:

search_vector is an alternative to the above mentioned search_text when the
semantic query is already available as a vector. The vector embedding that you
pass here must be generated using the same embedding model used for
semantic search by the specified hybrid vector index.

For example:

SELECT JSON_SERIALIZE(
         DBMS_HYBRID_VECTOR.SEARCH(
            json_object( 'hybrid_index_name' value 'my_hybrid_idx',
                 'vector' value json_object( 'search_vector' value 
vector_serialize(
                                            vector_embedding(doc_model
                                                        using
                                                        'C, Python, 
Database'
                                                        as data)
                                                    RETURNING CLOB)
                                             RETURNING JSON)
                  RETURNING JSON))
           RETURNING CLOB PRETTY)
FROM dual;

• search_mode: Document or chunk search mode in which you want to query the hybrid
vector index:

Parameter Description

DOCUMENT (default) Returns document-level results. In document mode, the result of your search is a list of
document IDs from the base table corresponding to the list of best documents identified.

CHUNK Returns chunk-level results. In chunk mode, the result of your search is a list of chunk
identifiers and associated document IDs from the base table corresponding to the list of best
chunks identified, regardless of whether the chunks come from the same document or
different documents.

The content from these chunk texts can be used as input for LLMs to formulate responses.
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For example, semantic search in chunk mode:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "CHUNK"
          }
      }'))
FROM DUAL;

• aggregator: Aggregate function to apply for ranking the vector scores for each document
in DOCUMENT SEARCH_MODE.

Parameter Description

MAX (default) Standard database aggregate function that selects the top chunk score as the result score.

AVG Standard database aggregate function that sums the chunk scores and divides by the count.

MEDIAN Standard database aggregate function that computes the middle value or an interpolated
value of the sorted scores.

BONUSMAX This function combines the maximum chunk score with the remainder multiplied by the
average score of the other top scores.

WINAVG This function computes the maximum average of the rolling window (of size windowSize) of
chunk scores.

ADJBOOST This function computes the average "boosted" chunk score. The chunk scores are boosted
with the BOOSTFACTOR multiplied by average score of the surrounding chunk's scores (if they
exist).

MAXAVGMED This function computes a weighted sum of the MAX, AVGN, and MEDN values.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "AVG"
          }
      }'))
FROM DUAL;

• result_max: The maximum number of vector results in distance order to fetch (approx)
from the vector index.

Value : Any positive integer greater then 0 (zero)

Default: If the field is not specified, by default, the maximum is computed based on topN.
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For Example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 5,
             "result_max"    : 100
          }
      }'))
FROM DUAL;

• score_weight: Relative weight (degree of importance or preference) to assign to the
semantic VECTOR_DISTANCE query. This value is used when combining the results of RSF
ranking.

Value: Any positive integer greater than 0 (zero)

Default: 10 (implies 10 times more importance to vector query than text query)

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 5
          }
      }'))
FROM DUAL;

• rank_penalty: Penalty (denominator in RRF, represented as 1/(rank+penalty) to assign
to vector query. This can help in balancing the relevance score by reducing the importance
of unnecessary or repetitive words in a document. This value is used when combining the
results of RRF ranking.

Value: 0 (zero) or any positive integer

Default: 1
For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_scorer"     : "rrf",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
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             "aggregator"    : "MAX",
             "score_weight"  : 5,
             "rank_penalty"  : 2
          }
      }'))
FROM DUAL;

• inpath: Valid JSON paths

vector.inpath uses the vectorizer paths as you have in the document. Providing this
parameter will restrict the search to the paths specified in this field. Accepts an array of
paths in valid JSON format - ($.a.b.c.d).

The list of paths match against VECTORIZER index path lists to form a query constraint on
the vector index search. Simple wild cards on the paths are supported such as $.main.*.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_scorer"     : "rrf",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 5,
             "rank_penalty"  : 2,
             "inpath"   : ["$.person.*", "$.product.*"]
          }
      }'))
FROM DUAL;

• accuracy: Target accuracy to assign to the semantic VECTOR_DISTANCE query.

Value: Any positive integer between 0 (zero) and 100.

Default: 0(zero). The value 0 indicates that the internal default for vector_distance query
will be assigned to the field.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 5,
             "rank_penalty"  : 2,
             "inpath"        : ["$.person.*", "$.product.*"],
             "accuracy"      : 95
          }
      }'))
FROM DUAL;
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• index_probes: Number of probes to assign to the semantic VECTOR_DISTANCE query.

Value: Any positive integer greater than 0 (zero).

Default: 0(zero). The value 0 indicates that the internal default number of probes will be
assigned to the field.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "vector":
          {
             "search_text"   : "leadership experience",
             "search_mode"   : "DOCUMENT",
             "aggregator"    : "MAX",
             "score_weight"  : 5,
             "rank_penalty"  : 2,
             "inpath"        : ["$.person.*", "$.product.*"],
             "accuracy"      : 95,
             "index_probes"  : 3
          }
      }'))
FROM DUAL;

• index_efsearch: efs to assign to the semantic VECTOR_DISTANCE query.

Value: Any positive integer greater than 0 (zero). The value 0 indicates that the internal
default for vector_distance query will be assigned to the field.

Default: 0(zero)

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name"   : "my_hybrid_idx",
         "vector":
          {
             "search_text"     : "leadership experience",
             "search_mode"     : "DOCUMENT",
             "aggregator"      : "MAX",
             "score_weight"    : 5,
             "rank_penalty"    : 2,
             "inpath"          : ["$.person.*", "$.product.*"],
             "accuracy"        : 95,
             "index_probes"    : 3,
             "index_efsearch"  : 500,
          }
      }'))
FROM DUAL;

• filter_type: Vector index hint filter type. For more information on optimizer plans, hints
and filter types for vector indexes, please refer to Optimizer Plans for Vector Indexes and 
Vector Index Hints.

Value: The filter_type field could take one of the following values:
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– PRE_W - Pre-filter with join back. This applies only to HNSW indexes.

– PRE_WO - Pre-filter without join back. This applies to both HNSW and IVF indexes.

– IN_W - In-filter with join back. This applies only to HNSW indexes.

– IN_WO - In-filter without join back. This applies only to HNSW indexes.

– POST_WO - Post-filter without join back. This applies only to IVF indexes.

Default: No filter type hint.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name"   : "my_hybrid_idx",
         "vector":
          {
             "search_text"     : "leadership experience",
             "search_mode"     : "DOCUMENT",
             "aggregator"      : "MAX",
             "score_weight"    : 5,
             "rank_penalty"    : 2,
             "inpath"          : ["$.person.*", "$.product.*"],
             "accuracy"        : 95,
             "index_probes"    : 3,
             "index_efsearch"  : 500,
             "filter_type"     : "IN_WO"
          }
      }'))
FROM DUAL;

text

Specify query parameters for keyword search against the Oracle Text index part of your hybrid
vector index:

• contains: Search text string (query text).

This string is converted into an Oracle Text CONTAINS query operator syntax for keyword
search.

You can use CONTAINS query operators to specify query expressions for full-text search,
such as OR (|), AND (&), STEM ($), MINUS (-), and so on. For a complete list of all such
operators to use, see Oracle Text Reference.

For example:

With a text contains string for pure keyword search:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "text":
                   { "contains" : "C and Python" }
          }'))
FROM DUAL;

With separate search texts using vector and text sub-elements for hybrid search. One
search text or a vector embedding to run a VECTOR_DISTANCE query for semantic search. A
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second search text to run a CONTAINS query for keyword search. This query conducts two
separate keyword and semantic queries, where keyword scores and semantic scores are
combined:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "vector":
                    { "search_text" : "leadership experience" },
             "text":
                    { "contains" : "C and Python" }
          }'))
FROM DUAL;

• search_text: The alternative search text to use to construct a contains query
automatically.

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "text":
                   { "contains"    : "C and Python",
                     "search_text" : "data science skills"
                   }
          }'))
FROM DUAL;

• json_textcontains: An alternate JSON expression to use instead of contains AND
search_text.

Note:

It is an error to specify json_textcontains WITH either text.contains or
text.search_text.

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "text":
                   { "json_textcontains"    : ["$.person", "$C 
and $Python"]
                   }
          }'))
FROM DUAL;

• score_weight: Relative weight (degree of importance or preference) to assign to the text
CONTAINS query. This value is used when combining the results of RSF ranking.

Value: Any positive integer greater than 0 (zero)

Default: 1 (implies neutral weight)

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
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         "text":
          {
             "contains"      : "C and Python",
             "score_weight"  : 1
          }
      }'))
FROM DUAL;

• rank_penalty: Penalty (denominator in RRF, represented as 1/(rank+penalty) to assign
to keyword query.

This can help in balancing the relevance score by reducing the importance of unnecessary
or repetitive words in a document. This value is used when combining the results of RRF
ranking.

Value: 0 (zero) or any positive integer

Default: 5
For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "text":
          {
             "contains"      : "C and Python",
             "rank_penalty"  : 5
          }
      }'))
FROM DUAL;

• inpath: Valid JSON paths

Providing this parameter will restrict the search to the paths specified in this field. Accepts
an array of paths in valid JSON format - ($.a.b.c.d).

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "text":
          {
             "contains"      : "C and Python",
             "rank_penalty"  : 5,
             "inpath"   : ["$.person.*","$.product.*"]
          }
      }'))
FROM DUAL;

• result_max: The maximum number of document results (ordered by score) to retrieve from
the document index. If not provided, the maximum is computed based on the topN.

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
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         "text":
          {
             "contains"      : "C and Python",
             "rank_penalty"  : 5,
             "inpath"        : ["$.person.*","$.product.*"],
             "result_max"    : 100
          }
      }'))
FROM DUAL;

filter_by

To constrain the search results via standard relational logical constraints :

Parameter Value

op Logical comparison operator. Accepted values
- One of these operators :

• Simple comparison operators : '<',
'>', '<=', '>=', '=', '!=', '^=',
'<>', 'LIKE', 'LIKEC', 'LIKE2',
'LIKE4', 'INSTR', 'INSTR2',
'INSTR4','INSTRB', 'INSTRC',
'STSTR', 'STSTR2',
'STSTR4','STSTRB', 'STSTRC',
'REGEXP_LIKE', 'BETWEEN', 'EXISTS'

Note:

STSTR is the only non-standard
operator in the list. It stands for
“START STRING” and is
analogous to INSTR, but the
result must be equal to position
1.

• Group comparison operators :

– 18 combinations of '<', '>', '<=',
'>=', '=', '!=' with ANY, SOME,
ALL

– IN
• Logical operators : 'AND', 'OR',

'NOT', 'NOTAND', 'NOTOR'
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Note:

"NOTAND" and "NOTOR" are
short-hand for the following
expressions, useful in reducing
the JSON expression tree. NOTOR
is NOT ( arg1 OR arg2 ...).
NOTAND is NOT ( arg1 AND
arg2 ...)

col Base table column name.

Note:

• No column is
required for
logical
operators.

• Only one of
col or path
could be
specified in the
same element.

path The JSON path dot notation within a base
table JSON column.
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Note:

• No path is
required for
logical
operators.

• Only one of
col or path
could be
specified in the
same element.

• If the base
table has a
JSON column
called data,
then the syntax
would be
"data.path"
where the path
is case-
sensitive
matching the
JSON data
schema. For
more details,
see JSON dot
notation.

type The data type of the column. Accepted types
include : number, date, timestamp and
string.

func For the comparison operators, an optional
function can be applied to the column value
before the comparison. These functions are
the standard SQL functions. The one
exception is "TO_DOUBLE" is provided as an
alias to the full name "TO_BINARY_DOUBLE"

Accepted values include : ABS, FLOOR,
LENGTH, CEILING, UPPER, LOWER,
TO_BOOLEAN, TO_DATE, TO_DOUBLE,
TO_BINARY_DOUBLE, TO_NUMBER, TO_CHAR,
TO_TIMESTAMP.

args An array of arguments to the operator:

Chapter 12
DBMS_HYBRID_VECTOR

12-136

https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/simple-dot-notation-access-json-data.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/adjsn/simple-dot-notation-access-json-data.html


• For simple comparison operators, the
args contains a single literal value. It is an
error to provide 0 or more than 1
arguments.

• For group comparison operators, the args
contains 1 or more literal values. It is an
error to provide 0 arguments.

• For logical operators, the args contains
sub-elements of the same structure,
forming an expression tree.

For example: Using simple comparison operators

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "filter_by":
                    { "op"   : "<",
                      "col"  : "price",
                      "type" : "number",
                      "func" : "ABS"
                      "args" : ["10"] }
          }'))
FROM DUAL;

For example: Using group comparison operators

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "filter_by":
                    { "op"   :  "IN",
                      "path" : "DATA.brand",
                      "type" " "string",
                      "args" : ["nike", "adidas"] }
          }'))
FROM DUAL;

For example: Using logical operators

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json('{ "hybrid_index_name" : "my_hybrid_idx",
            "filter_by":
                    { "op"   :  "AND",
                      "args" : [
                      {"op" : "IN", "col" : "brand", "type" : "string", 
"args" : ["nike", "adidas"]},
                      {"op" : "<", "col" : "price", "type" : "number", 
"args" : ["10"]}]
                    }
          }'))
FROM DUAL;
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return

Specify which fields to appear in the result set:

Parameter Description

topN Maximum number of best-matched results to be returned

Value: Any integer greater than 0 (zero)

Default: 20
values Return attributes for the search results. Values for scores range between 100 (best) to 0

(worse).

• rowid: Row ID associated with the source document.

• score: Final score computed from keyword-and-semantic search scores.

• vector_score: Semantic score from vector search results.

• text_score: Keyword score from text search results.

• vector_rank: Ranking of chunks retrieved from semantic or VECTOR_DISTANCE
search.

• text_rank: Ranking of documents retrieved from keyword or CONTAINS search.

• chunk_text: Human-readable content from each chunk.

• chunk_id: ID of each chunk text.

• paths: Paths from which the result occurred.

Default: All the above return attributes EXCEPT paths are shown by default. As there are no
paths for non-JSON, you need to explicitly specify the paths field.

format Format of the results as:

• JSON (default)

• XML

For example:

SELECT DBMS_HYBRID_VECTOR.SEARCH(
    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_text"       : "C, Python",
         "return":
          {
             "values"        : [ "rowid", "score", "paths" ],
             "topN"          : 3,
             "format"        : "JSON"
          }
      }'))
FROM DUAL;

Complete Example With All Query Parameters

The following example shows a hybrid search query that performs separate text and vector
searches against my_hybrid_idx. This query specifies the search_text for vector search using
the vector_distance function as prioritize teamwork and leadership experience and the
keyword for text search using the contains operator as C and Python. The search mode is
DOCUMENT to return the search results as topN documents.

SELECT JSON_SERIALIZE(
  DBMS_HYBRID_VECTOR.SEARCH(
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    json(
      '{ "hybrid_index_name" : "my_hybrid_idx",
         "search_fusion"     : "INTERSECT",
         "search_scorer"     : "rsf",
         "vector":
          {
             "search_text"   : "prioritize teamwork and leadership 
experience",
             "search_mode"   : "DOCUMENT",
             "score_weight"  : 10,
             "rank_penalty"  : 1,
             "aggregator"    : "MAX",
             "inpath"        : ["$.main.body", "$.main.summary"],
             "accuracy"      : 95
          },
         "text":
          {
             "contains"      : "C and Python",
             "score_weight"  : 1,
             "rank_penalty"  : 5,
             "inpath"        : ["$.main.body"]
          },
         "return":
          {
             "format"        : "JSON",
             "topN"          : 3,
             "values"        : [ "rowid", "score", "vector_score",
                                 "text_score", "vector_rank",
                                 "text_rank", "chunk_text", "chunk_id", 
"paths" ]
          }
      }'
    )
  ) pretty)
FROM DUAL;

The top 3 rows are ordered by relevance, with higher scores indicating a better match. All the
return attributes are shown by default:

[
  {
    "rowid"         : "AAAR9jAABAAAQeaAAA",
    "score"         : 58.64,
    "vector_score"  : 61,
    "text_score"    : 35,
    "vector_rank"   : 1,
    "text_rank"     : 2,
    "chunk_text"    : "Candidate 1: C Master. Optimizes low-level system 
(i.e. Database)
                       performance with C. Strong leadership skills in 
guiding teams to 
                       deliver complex projects.",
    "chunk_id"      : "1",
    "paths"         : ["$.main.body","$.main.summary"]
  },
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  {
    "rowid"         : "AAAR9jAABAAAQeaAAB",
    "score"         : 56.86,
    "vector_score"  : 55.75,
    "text_score"    : 68,
    "vector_rank"   : 3,
    "text_rank"     : 1,
    "chunk_text"    : "Candidate 3: Full-Stack Developer. Skilled in 
Database, C, HTML,
                       JavaScript, and Python with experience in building 
responsive web 
                       applications. Thrives in collaborative team 
environments.",
    "chunk_id"      : "1",  
    "paths"         : ["$.main.body", "$.main.summary"]
  },
  {
    "rowid"         : "AAAR9jAABAAAQeaAAD",
    "score"         : 51.67,
    "vector_score"  : 56.64,
    "text_score"    : 2,
    "vector_rank"   : 2,
    "text_rank"     : 3,
    "chunk_text"    : "Candidate 2: Database Administrator (DBA). Maintains 
and secures
                       enterprise database (Oracle, MySql, SQL Server). 
Passionate about 
                       data integrity and optimization. Strong mentor for 
junior DBA(s).",
    "chunk_id"      : "1",
    "paths"         : ["$.main.body", "$.main.summary"]
  }
]

End-to-end example:

To see how to create a hybrid vector index and explore all types of queries against the index,
see Query Hybrid Vector Indexes End-to-End Example.

Related Topics

• Perform Hybrid Search

GET_SQL
Use the DBMS_HYBRID_VECTOR.GET_SQL PL/SQL function to return the internal SQL query that is
generated from the parameters.

When calling the DBMS_HYBRID_VECTOR Search function, the API is called using the JSON
Document format. Using the GET_SQL procedure shows the SQL that the
DBMS_HYBRID_VECTOR.SEARCH API has generated. The resulting SQL can be used to view the
query execution plan to view the index chosen for the hybrid search operation. An example is
shown below:

SET LINESIZE 200;
SET PAGESIZE 1000;

Chapter 12
DBMS_HYBRID_VECTOR

12-140



SET TAB OFF;
SET TRIMSPOOL ON;
DECLARE
    res CLOB;
BEGIN
    res := dbms_hybrid_vector.get_sql(JSON('{"hybrid_index_name" : 
"trecvol2j_idx",
                                            "search_text" : "offers",
                                            "return" : { "values" : 
[ "score" ] } }'));
    execute immediate 'EXPLAIN PLAN FOR '||res;
END;
/

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY(NULL,NULL,'ADVANCED'));

SEARCHPIPELINE
Use the standard table function DBMS_HYBRID_VECTOR.SEARCHPIPELINE to return a pipeline of
row records.

This pipeline function accepts valid JSON query input and returns a pipeline of row records.
The syntax is as shown below:

FUNCTION SEARCHPIPELINE(qparams JSON)
RETURN results PIPELINED;

The results is of type RECORD. The results contains the following fields:

Field Type

doc_rowid varchar2(18)

score number

vector_score number

text_score number

vector_rank number

text_rank number

chunk_text varchar2(32767)

chunk_id varchar2(4000)

paths varchar2(4000)
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The record members are the column names in the SELECT statement. These names are the
same as the JSON field names that are returned in DBMS_HYBRID_VECTOR_SEARCH(), except
that paths is a list of field IDs in the record, where as the JSON result maps the ids to their
actual paths (in an array). Also note that the result record could not have a member named
rowid nor a member with a rowid type.

Example 12-1    

SELECT
   chartorowid(doc_rowid) as doc_rowid,
   score,
   vector_score,
   text_score,
   vector_rank,
   text_rank,
   chunk_text,
   chunk_id,
   paths
FROM dbms_hybrid_vector.searchpipeline(JSON('{"hybrid_index_name" : "idx",
                                              "search_text" : "teamwork" }'));

If you do not wish to use the table function DBMS_HYBRID_VECTOR.SEARCHPIPELINE(), the
original SEARCH API can be wrapped in a JSON_TABLE specification. This is shown in the
example below:

SELECT jt.*
FROM
   JSON_TABLE(
        dbms_hybrid_vector.search(
                      json_object('hybrid_index_name' value 'idx',
                      'search_text' value 'teamwork'
                      RETURNING JSON)
                   ),
                   '$[*]' COLUMNS idx for ORDINALITY,
                                  doc_rowid PATH '$.rowid',
                                  score NUMBER PATH '$.score',
                                  vector_score NUMBER PATH '$.vector_score',
                                  text_score NUMBER PATH '$.text_score',
                                  vector_rank NUMBER PATH '$.vector_rank',
                                  text_rank NUMBER PATH '$.text_rank',
                                  chunk_text PATH '$.chunk_text',
                                  chunk_id PATH '$.chunk_id',
                                  paths PATH '$.paths'
                    ) jt
ORDER by idx ASC
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A
Python Classes to Convert Pretrained Models
to ONNX Models (Deprecated)

This topic provides the functions, attributes and example usage of the deprecated python
classes EmbeddingModelConfig and EmbeddingModel.

Note:

This API is updated for 23.7. The version used for 23.6 and below used python
packages EmbeddingModel and EmbeddingModelConfig. These packages are
replaced with ONNXPipeline and ONNXPipelineConfig respectively. Oracle
recommends that you use the latest version. If a you choose to use a deprecated
class, a warning message will be shown indicating that the classes will be removed in
the future and advising the user to switch to the new class. You can find the details of
the updated python classes in Import Pretrained Models in ONNX Format

Examples for converting pretrained text models to ONNX format using
EmbeddingModel, EmbeddingModelConfig

1. To load the python classes on the OML4Py client :

from oml.utils import EmbeddingModel, EmbeddingModelConfig

2. You can get a list of all preconfigured models by running the following:

EmbeddingModelConfig.show_preconfigured()

3. To get a list of available templates:

EmbeddingModelConfig.show_templates()

4. Generate an ONNX file from the preconfigured model "sentence-transformers/all-MiniLM-
L6-v2":

em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
em.export2file("your_preconfig_file_name",output_dir=".")

5. Generate an ONNX model from the preconfigured model "sentence-transformers/all-
MiniLM-L6-v2" in the database:

em = EmbeddingModel(model_name="sentence-transformers/all-MiniLM-L6-v2")
em.export2db("your_preconfig_model_name")

A-1



6. Generate an ONNX file using the provided text template:

config = EmbeddingModelConfig.from_template("text",max_seq_length=512)
em = EmbeddingModel(model_name="intfloat/e5-small-v2",config=config)
em.export2file("your_template_file_name",output_dir=".")

Functions and Attributes of EmbeddingModelConfig

The EmbeddingModelConfig class contains the properties required for the package to perform
downloading, exporting, augmenting, validation, and storing of an ONNX model. The class
provides access to configuration properties using the dot operator. As a convenience, well-
known configurations are provided as templates.

Parameters

This table describes the functions and properties of the EmbeddingModelConfig class.

Functions Parameter Type Returns Description

from_template(name,
**kwargs)

• name (String): The
name of the
template

• **kwargs: template
properties to
override or add

Instance of
EmbeddingModelConfi
g

A static function that
creates an
EmbeddingModelConfi
g object based on a
predefined template
given by the name
parameter. You can use
named arguments to
override the template
properties.

show_templates() NA List of existing templates A static function that
returns a list of existing
templates by name.
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Functions Parameter Type Returns Description

show_preconfigured(
)

• include_propert
ies
(bool,optional):
A flag indicating
whether properties
should be included
in the results.
Defaults to False
so only names will
be included by
default.

• model_name
(str,optional): A
model name to filter
by when including
properties. This
argument will be
ignored if
include_propert
ies is False.
Otherwise only the
properties of this
model will be
included in the
results.

A list of preconfigured
model names or
properties.

Shows a list of
preconfigured model
names, or properties. By
default, this function
returns a list of names
only. If the properties are
required, pass the
include_properties
parameter as True. The
returned list will contain
a single dict where each
key of the dict is the
name of a preconfigured
model and the value is
the property set for that
model. Finally, if only a
single set of properties
for a specific model is
required, pass the name
of the model in the
model_name parameter
(the
include_properties
parameter should also
be True). This will return
a list of a single dict with
the properties for the
specified model.

Template Properties

The text template has configuration properties shown below:

"do_lower_case": true,
"post_processors":[{"name":"Pooling","type":"mean"},{"name":"Normalize"}]

Note:

All other properties in the Properties table will take the default values. Any property
without a default value must be provided when creating the EmbeddingModelConfig
instance.

Properties

This table shows all properties that can be configured. preconfigured models already have
these properties set to specific values. Templates will use the default values unless a user
overrides it when using the from_template function on EmbeddingModelConfig.
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Property Description

post_processors An array of post_processors that will be loaded after the
model is loaded or initialized. The list of known and supported
post_processors is provided later in this section. Templates
may define a list of post_processors for the types of models
they support. Otherwise, an empty array is the default.

max_seq_length This property is applicable for text-based models only. The
maximum length of input to the model as number of tokens.
There is no default value. Specify this value for models that
are not preconfigured.

do_lower_case Specifies whether or not to lowercase the input when
tokenizing. The default value is True.

quantize_model Perform quantization on the model. This could greatly reduce
the size of the model as well as speed up the process. It may
however result in different results for the embedding vector
(against the original model) and possibly small reduction in
accuracy. The default value is False.

distance_metrics An array of names of suitable distance metrics for the model.
The names must be name of distance metrics used for Oracle
vector distance operator. Only used when exporting the model
to the database. Supported list is
["EUCLIDEAN","COSINE","MANHATTAN","HAMMING","DOT","EUCL
IDEAN_SQUARED", "JACCARD"]. The default value is an empty
array.

languages An array of language (Abbreviation) supported in the
Database. Only used when exporting the model to the
database. For a supported list of languages, see Languages.
The default value is an empty array.

use_float16 Specifies whether or not to convert the exported onnx model
to float16. The default value is False.

Properties of post_processors

This table describes the built-in post_processors and their configuration parameters.

post_processor Parameters Description

Pooling • name: Pooling.

• type: Valid values should be
mean(Default), max, cls

The Pooling post_processor
summarizes the output of the
transformer model into a fixed-
length vector.

Normalize • name: Specify Normalize The Normalize post_processor
bounds the vector values to a
range using L2 normalization.
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post_processor Parameters Description

Dense • name: Dense

• in_features: Input feature
size

• out_features: Output
feature size

• bias: Whether to learn an
additive bias. The default
value is True.

• activation_function:
Activation function of the
dense layer. Currently only
supports Tanh as the
activation function.

Applies transformation to the
incoming data.

Example: Configure post_processors

In this example, you override the post_processors in the sentence-transformers template with
a Max Pooling post_processor followed by Normalization.

config = EmbeddingModelConfig.from_template("text")
config.post_processors = [{"name":"Pooling","type":"max"},
{"name":"Normalize"}]

Functions and Attributes of EmbeddingModel

Use the EmbeddingModel class to convert transformer models to the ONNX format with
post_processing steps embedded into the final model.

Parameters

This table describes the signature and properties of the EmbeddingModel class.

Functions Parameters Description

EmbeddingModel(model_name,
configuration=None,setting
s={})

• model_name: The name of
the model to be used. For
example, medicalai/
ClinicalBERT

• configuration: An
initialized
EmbeddingModelConfig
object. This parameter must
be specified when using a
template. If not specified, the
model will be assumed to be
a preconfigured model.

• settings: A dictionary of
various settings that are
global and control various
operations such as logging
levels and locations for files.

Creates a new instance of the
EmbeddingModel class.
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Settings

The settings object is a dictionary passed to the EmbeddingModel class. It provides global
properties for the EmbeddingModel class that are used for non-model-specific operations, such
as logging.

Property Default Value Description

cache_dir $HOME/.cache/OML The base directory used for
downloads. Model files will be
downloaded from the repository
to directories relative to the
cache_dir. If the cache_dir
does not exist at time of
execution, it will be created.

logging_level ERROR The level for logging. Valid values
are [‘DEBUG’, ‘INFO’,
‘WARNING’, ‘ERROR’,
‘CRITICAL’].

Note: This log level is also
applied globally to all python
packages and is also mapped to
the ONNXRuntime libraries.

force_download False Forces download of model files
instead of reloading from cache.

ignore_checksum_error False Ignores any errors caused by
mismatch in checksums when
using preconfigured models.

Functions

This table describes the function and properties of the EmbeddingModel class.

Function Parameters Description

export2file(export_name,ou
tput_dir=None)

• export_name(string):
The name of the file. The file
will be saved with the file
extension .onnx

• output_dir(string): An
optional output directory. If
not specified the file will be
saved to the current directory

Exports the model to a file.

export2db(export_name) • export_name(string): The
name that will be used for
the mining model object. This
name must be compliant with
existing rules for object
names in the database.

Exports the model to the
database.

Example: Preconfigured Model

This example illustrates the preconfigured embedding model that comes with the Python
package. You can use this model without any additional configurations.

"sentence-transformers/distiluse-base-multilingual-cased-v2": {
        "max_seq_length": 128,
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        "do_lower_case": false,
        "post_processors":[{"name":"Pooling","type":"mean"},
{"name":"Dense","in_features":768, "out_features":512, "bias":true, 
"activation_function":"Tanh"}],
        "quantize_model":true,
        "distance_metrics": ["COSINE"],
        "languages": ["ar", "bg", "ca", "cs", "dk", "d", "us", "el", "et", 
"fa", "sf", "f", "frc", "gu", "iw", "hi", "hr", "hu", "hy", "in", "i", "ja", 
"ko", "lt", 
                      "lv", "mk", "mr", "ms", "n", "nl", "pl", "pt", "ptb", 
"ro", "ru", "sk", "sl", "sq", "lsr", "s", "th", "tr", "uk", "ur", "vn", 
"zhs", "zht"]
    }
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Glossary

dimension
A dimension refers to an array element of a vector.

dimension format
The dimensions of a vector can be represented using numbers of varying types and precisions,
called the dimension format. The dimensions supported by vector embeddings in Oracle
Database are INT8 (1-byte signed integer), FLOAT32 (4-byte single-precision floating point
number), and FLOAT64 (8-byte double-precision floating point number). All dimensions of a
vector must have the same dimension format.

distance metric
Distance metric refers to the mathematical function used to compute distance between vectors.
Popular distance metrics supported by Oracle AI Vector search include Euclidean distance,
Cosine distance, and Manhattan distance, among others.

embedding model
Embedding models are Machine Learning algorithms that are trained to capture semantic
information of unstructured data and represent it as vectors in multidimensional space.
Different embedding models exist for different types of unstructured data, for example, BERT
for Text data, ResNet-50 for Image data, and so on.

hybrid search
Hybrid search is an advanced information retrieval technique that lets you search documents
by both keywords and vectors. Hybrid searches are run against hybrid vector indexes by
querying it in various search modes. By integrating traditional keyword-based text search with
vector-based similarity search, you can improve the overall search experience and provide
users with more relevant information.

hybrid vector index
A hybrid vector index is a class of specialized Domain Index that combines the existing Oracle
Text search indexes and Oracle AI Vector Search vector indexes into one unified structure. A
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single index contains both textual and vector fields for a document, enabling you to perform a
combination of keyword-based text search and vector-based similarity search simultaneously.

large language model
Large language models (LLMs) are advanced Machine Learning models designed to
understand, process, and generate natural language for rich human interaction. They are
typically built using deep learning algorithms and are pretrained on vast amounts of data.
Popular examples include Open AI’s GPT-4, Cohere’s Command R+, and Meta’s LLaMa 3.

multi-vector
Multi-vector refers to a scenario where multiple vectors correspond to a single entity. For
example, a large text document can be chunked into paragraphs and every paragraph can be
embedded into a separate vector. A similarity search query could retrieve matching documents
based on the most similar paragraph (closest vectors) per document to a given query vector.
Oracle AI Vector Search has the option of Partitioned Row Limiting Fetch syntax to enable
efficient multi-vector searches.

neighbor graph
A neighbor graph is a graph-based data structure used in vector indexes. For example, a
Hierarchical Navigable Small World (HNSW) vector index leverages a multilayer neighbor
graph index. In a neighbor graph, each vertex of the graph represents a vector in the data set,
and edges are created between vertices representing similar vectors.

query accuracy
Query accuracy is an intuitive indicator of the quality of an approximate query result obtained
from a vector index search. Consider a query vector, for which an exact search, that searches
through all vectors in the data set, returns Top 5 matches as {ID1, ID3, ID5, ID7, ID9}, and
an approximate vector index search returns Top 5 matches as {ID1, ID3, ID5, ID9, ID10}.
Since the approximate result has 4 out of 5 correct matches, the query accuracy is 80%.

query vector
Query vector refers to the vector embedding representing the item for which the user wants to
find similar items using similarity search. For example, while searching for movies similar to a
user’s favorite movie, the vector embedding representing the user’s favorite movie is the query
vector.

Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) is a popular technique for enhancing the accuracy of
responses generated by Large Language Models by augmenting the user-provided prompt
with relevant, up-to-date, enterprise-specific content retrieved using AI Vector Search.
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Applications, such as Chat Assistants, built using RAG are often more accurate, reliable, and
cost-effective.

similarity search
Similarity Search is a common operation in information retrieval to find items in a data set that
are similar to a user-provided query item. For example, finding movies similar to a user’s
favorite movie is an example of similarity search. Vectors can enable efficient similarity
searches by leveraging the property that the mathematical distance between vectors is a proxy
for similarity, as in, the more similar two items are, the smaller the distance between the
vectors.

vector
A vector is a mathematical entity that has a magnitude and a direction. It is typically
represented as an array of numbers, which are coordinates that define its position in a
multidimensional space.

vector distance
Vector distance refers to the mathematical distance between two vectors in a multidimensional
space. The vector distance between similar items is smaller than the vector distance between
dissimilar items. Vector distance is meaningful only if the vectors being compared are
generated by the same embedding model.

vector embedding
A vector embedding is a numerical representation of text, image, audio, or video data that
encodes the semantic content of the data, and not the underlying words or pixels. The terms
vector and vector embedding are often used interchangeably in AI Vector Search.

vector index
Vector indexes are a class of specialized indexing data structures that are designed to
accelerate similarity searches using high-dimensional vectors. They use techniques such as
clustering, partitioning, and neighbor graphs to group vectors representing similar items, which
drastically reduces the search space, thereby making the search process extremely efficient.
Unlike traditional databases indexes, vector indexes enable approximate similarity searches,
which allow users to trade off query accuracy for query performance to better suit application
requirements.

Vector Memory Pool
Vector Memory Pool is a region of the System Global Area (SGA) that is dedicated to storing
In-Memory Neighbor Graph Vector Indexes (HNSW index), as well as metadata for Neighbor
Partition Vector Indexes. It can be specified by using the VECTOR_MEMORY_SIZE parameter.
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